CHEMICAL BONDING AND MOLECULAR STRUCTURE

CHEMISTRY

	Single Correct Answer Type				
1.	The hybrid state of S in SO_3 is similar to that of				
	a) C in C_2H_2 b) C in C_2H_4	c) C in CH ₄	d) C in CO ₂		
2.	The hydration energy of Mg^{2+} is larger than that of:		$\langle \rangle$		
	a) Al ³⁺ b) Na ⁺	c) Be ²⁺	d) None of these		
3.	Number of lone pair (s) in XeOF ₄ is/are				
	a) 0 b) 1	c) 2	d) 3		
4.	Van der Waals' forces between molecules depend up	on:			
	a) Number of electrons b) Charge on nucleus	c) Radius of atoms	d) All of these		
5.	XeF ₆ is:	Ć.			
	a) Octahedral				
	b) Pentagonal pyramidal				
	c) Planar				
(d) tetrahedral The band order in NO is 2.5 while that in NO ^{\pm} is 2.1				
6.	The bond order in NO IS 2.5 while that in NO ⁺ IS 3. V	vnich of the following state	ements is true for these two		
	a) Bond length in NO^+ is greater than in NO^+				
	h) Bond length in NO is greater than in NO ⁺				
	c) Bond length in NO^+ is equal to than in NO^+	Y			
	d) Bond length is unpredictable				
7.	An atom with atomic number 20 is most likely to con	nbine chemically with the a	atom whose atomic number		
	is:				
	a) 11 b) 16	c) 18	d) 10		
8.	Which has the largest distance between the carbon h	ydrogen atom?			
	a) Ethane b) Ethene	c) Ethyne	d) Benzene		
9.	Length of hydrogen bond ranges from 2.5Å to:	0	0		
	a) 3.0 Å b) 2.75 Å	c) 2.6 Å	d) 3.2 Å		
10.	If $H - X$ bond length is 2.00 Å and $H - X$ bond has di	pole moment 5.12 $ imes$ 10 ⁻³⁰	C – m,		
	the percentage of ionic character in the molecule wil	l be			
	a) 10% b) 16%	c) 18%	d) 20%		
11.	Which molecule is planar?				
10	a) NH_3 b) CH_4	C) C_2H_4	d) SiCl ₄		
12.	From the molecular orbital theory, one can show tha	t the bond order in F_2 mole	acule as		
12	a) Z DJ I Two ice subscience proceed over each other until they	CJ 3 Vunita ta farm ana black W	U) 4 Which and of the following		
15.	forces dominates for holding them together?	unite to form one block. W	finch one of the following		
	a) Dipole-dipole interaction	h) Van der Waals' forces			
	c) Hydrogen bond formation	d) Covalent attraction			
14.	Maximum number of covalent bonds between two lil	ke atoms can be:			
	a) Three b) Two	c) Four	d) One		
15.	When sodium and chlorine react, energy is:	-	-		
	a) Released and ionic bond is formed				
	b) Released and covalent bond is formed				
	c) Absorbed and covalent bond is formed				

	d) Absorbed and ionic bond is formed			
16.	The maximum possible n	umber of hydrogen bonds	is a H ₂ O molecule can parti	cipate is
	a) 1	b) 2	c) 3	d) 4
17.	The element having lowe	st ionisation energy among	g the following is:	
	a) $1s^2$, $2s^22p^3$	b) 1s ² , 2s ² 2p ⁶ , 3s ¹	c) $1s^2$, $2s^22p^6$	d) $1s^2$, $2s^22p^5$
18.	Bond energies in NO, NO	⁺ and NO ⁻ are such as		
	a) $NO^- > NO > NO^+$	b) NO > NO ⁻ > NO^+	c) $NO^+ > NO > NO^-$	d) $NO^+ > NO^- > NO$
19.	Two type F <i>X</i> F angles are	present in which of the foll	owing molecules? (X=S, Xe	e, C)
	a) SF_4	b) XeF ₄	c) SF ₆	d) CF_4
20.	The bond angle between	two hybrid orbitals is 105°	. The percentage of <i>s</i> -chara	acter of hybrid orbital is
	between	5	1 0	
	a) 50 – 55%	b) 9 – 12%	c) 22 – 23%	d) 11 – 12%
21.	Which is electron deficient	nt compound?	,	
	a) C ₂ H ₄	b) B_2H_6	c) C ₂ H ₆	d) NaBH₄
22.	CCl_{4} is insoluble in water	· because:	5 2 0	
	a) CCl_{4} is non-polar and	water is polar	A	\mathbf{Q}
	b) Water is non-polar and	d CCl₄ is polar	Ć	
	c) Water and CCl_4 both a	re polar		
	d) None of the above	1		~
23.	Which of the following is	not correct regarding the p	properties of ionic compour	nds?
	a) Ionic compounds have	high metling and boiling p	oints	
	b) Their reaction velocity	in aqueous medium is ver	y high	
	c) Ionic compounds in th	eir molten and aqueous sol	lutions do not conduct elec	tricity
	d) They are highly solubl	e in polar solvents		2
24.	The number of sigma and	l pi (π) bonds present in be	enzene respectively are	
	a) 12, 6	b) 6, 6	c) 6, 12	d) 12, 3
25.	Which of the following is	not tetrahedral?		-
	a) BF ₄	b) NH ₄	c) CO_3^{2-}	d) SO_4^{2-}
26.	In PCl ₅ molecule, P is:		2 0	
	a) <i>sp</i> ³ -hybridized	b) <i>dsp</i> ² -hybridized	c) <i>ds³p</i> -hybridized	d) <i>sp</i> ³ <i>d</i> -hybridized
27.	The bond angle and % of	d-character in SF ₆ are		
	a) 120°, 20%	b) 90°, 33%	c) 109°, 25%	d) 90°, 25%
28.	Linear combination of tw	o hybridized orbitals, belo	nging to two atoms and eac	ch having one electron leads
	to:			
	a) Sigma-bond			
	b) Double bond			
	c) Coordinate covalent b	ond		
	d) Pi-bond			
29.	In allene structure, three	carbon atoms are joined by	y:	
	a) Three σ -and three π -b	onds		
	b) Two σ - and one π -bon	d		
\mathbf{C}	c) Two σ -and two π -bond	ds		
	d) Three π -bonds only			
30.	Geometry of SiO_4^{4-} anion	is		
	a) Tetrahedral	b) Trigonal	c) Trihedral	d) Pentagonal
31.	The carbon atom in grap	hite is:		
	a) <i>sp</i> ² -hybridized	b) <i>sp</i> ³ -hybridized	c) <i>sp</i> -hybridized	d) None of these
32.	Boron cannot form which	n one of the following anion	is?	
	> ==?	1		1
	a) BF_6^{3-}	b) BH_4^-	c) $B(OH)_4^-$	d) BO_2^-

should be respectively: a) 1.34 and 1.34 Å b) 2.31 and 0.64 Å c) 0.64 and 2.31 Å d) 2.31 and 1.34 Å 34. If *Z*-axis is the molecular axis, then π -molecular orbitals are formed by the overlap of b) $p_x + p_y$ a) $s + p_z$ c) $p_z + p_z$ d) $p_x + p_x$ 35. Which one is the weakest bond? c) Covalent d) Metallic a) Hydrogen b) Ionic 36. The total number of valency electrons for PO_4^{3-} ion is: a) 32 b) 16 d) 30 c) 28 37. The ratio of σ and π -bonds in benzene is: a) 2 b) 6 c) 4 d) 8 38. The geometry of PF₅ molecule is: a) Planar b) Square planar c) Trigonal bipyramidal d) Tetrahedra 39. Which one of the following linear structure? $(I)I_{3}^{-}$ $(II)NO_{2}^{-}$ $(III)I_3^+$ $(IV)SO_2$ $(V)N_3^$ d) All of these a) I, II and III b) I and V c) II, III and IV 40. According to MO theory, which of the following lists ranks the nitrogen species in terms of increasing bond order? b) $N_2^- < N_2 < N_2^{2-}$ c) $N_2^{2-} < N_2^{-}$ d) $N_2 < N_2^{2-} < N_2^{--}$ a) $N_2^- < N_2^{2-} < N_2$ 41. The equilateral triangle shape has: c) *sp*³-hybridization d) sp^3d -hybridization b) sp^2 -hybridization a) *sp*-hybridization 42. Which of the following has fractional bond order? b) 0^{2-}_{2-} a) 0^{2+}_{2+} d) H_{2}^{-} 43. For which of the following hybridization the bond angle is maximum? b) *sp* a) sp^2 c) sp^3 d) dsp^2 44. Experiment shows that H₂O has a dipole moment whereas, CO₂ has not. Point out the structures which best illustrate these facts: H = O = C = O, $\bigwedge_{H = H}^{O} = C = O$, $\bigwedge_{H = H}^{O} = O$, $\bigcap_{H = H}^{O} = O$, O = Ha) O=C=O, H-O-H 45. In TeCl₄, the central atom tellurium involves b) $sp^3 d$ hybridization c) $sp^3 d^2$ hybridisation d) dsp^2 hybridisation a) sp^3 hybridisation 46. Stability of hydrides generally increases with: a) Increase in bond angle b) Decrease in bond angle c) Decrease in resonance d) None of these 47. Which of the following is isoelectronic with CO_2 ? a) NO_{2} b) NO c) N_20 d) N_2O_4 48. Which can be described as a molecule with residual bonding capacity? a) N_2 b) CH₄ c) NaCl d) $BeCl_2$ 49. Lattice energy of an ionic compound depends upon a) Charge on the ion and size of the ion b) Packing of ions only c) Size of the ion only d) Charge on the ion only 50. Identify the correct statement from below, concerning the structure of $CH_2 = C = CH_2$ b) One of the three carbon atoms is in an-sp³hybridised state a) The molecule is planar The molecule is non - planar with the two – CH_2d) All the carbon atoms are *sp*-hybridized groups being in planes perpendicular to each

other 51. (i) H - C - H angle in CH_4 (ii) Cl - B - Cl angle in BCl_3 (iii) F - I - F angle in IF_7 in a plane (iv) I - I - I angle in I_3^- Increasing order of above bond angles is b) (ii) < (i) < (iii) < (iv) a) (i) < (ii) < (iii) < (iv) c) (iii) < (i) < (ii) < (iv) d) (iv) < (ii) < (i) < (iii) 52. Among the following elements, the most electronegative is: a) Oxygen b) Chlorine c) Nitrogen d) Fluorine 53. Metallic bonds do not play a role in: a) Brass b) Copper c) Germanium d) Zinc 54. Which *p*-orbitals overlapping would give the strongest bond? a) b) (c) 55. H_2O boils at higher temperature than H_2S because it is capable of forming: c) Hydrogen bonds a) Ionic bonds b) Covalent bonds d) Metallic bonds 56. When two atomic orbitals combine, they form: a) One molecular orbitals b) Two molecular orbitals c) Two bonding molecular orbitals d) Two antibonding molecular orbitals 57. The correct increasing covalent nature is: b) $BeCl_2 < NaCl < LiCl$ c) $BeCl_2 < LiCl < NaCl$ a) NaCl < LiCl < BeCl₂ d) LiCl < NaCl < BeCl₂ 58. IP₁ and IP₂ of Mg are 178 and 348 kcal mol⁻¹. The energy required for the reaction, $Mg \rightarrow Mg^{2+} + 2e^{-}$ is: a) +170 kcal +526 kcal c) -170 kcal d) -526 kcal b) 59. The electronic configuration $(\sigma_{1s})^2 (\overset{*}{\sigma}_{1s})^2 (\sigma_{2s})^2 (\sigma_{2s})^2 (\sigma_{2p_x})^2$ $(\pi 2p_y)^2(\pi 2p_z)^2(\pi 2p_v)^2(\pi 2p_v)^2(\pi 2p_z)^1$ can be assigned to b) 0₂+ d) 0_2^{2-} c) 0₂ a) 0_2 60. Some of the properties of the two species, NO_3^- and H_3O^+ are described below. Which one of them is correct? a) Dissimilar in hybridization for the central atom with different structure b) Isostructural with same hybridization for the central atom c) Isostructural with different hybridization for the central atom d) Similar is hybridization for the central atom with different structure 61. 6,6 a) 6, 6 b) 6, 6 c) 6, 6 d) 6, 6 62. Greater the dipole moment: a) Greater is the ionic nature

	b) Lesser the polarity			
	c) Smaller the ionic nature	е		
	d) None of these			
63.	H–B–H bond angle in BH	⁻ ₄ is:		
	a) 180°	b) 120°	c) 109°	d) 90°
64.	Which of the following mo	olecular orbitals has two no	odal planes?	
	a) $\sigma 2p_r$	b) $\pi 2p_{y}$	c) $\pi^* 2p_{\nu}$	d) $\sigma^* 2p_r$
65.	The common feature amo	ng the species CN^{-} . CO and	I NO ⁺ are:	5 12
	a) Bond order three and	b) Bond order three and	c) Bond order two and π -	d) Isoelectronic and weak
	isoelectronic	weak field ligands	acceptors	field ligands
66.	Hydrogen bonding is max	imum in	·····	
	a) C₂H₌OH	b) CH ₂ OCH ₂	c) $(CH_2)_2 C = 0$	d) CH ₂ CHO
67.	The O—H bond distance in	n water molecule is:	-) (3)2	.,,
••••	a) 1.0Å	b) 1.33 Å	c) 0.96 Å	d) 1.45 Å
68.	Ω_2^{2+} has a bond order of	-)	.,	
	a) 1	h) 2	c) 3	d) 4
69.	Which among the following	g molecules / ions is diama	agnetic?	
0,1	a) Super oxide ion			
	h) Oxygen			
	c) Carbon molecule			
	d) Unipositive ion of N ₂ m	olecule		
70.	The enolic form of acetone	e contains		
	a) 9 sigma bonds. 1 pi bon	nd and two lone pairs		
	b) 8 sigma bonds. 2 pi bon	nd and two lone pairs		
	c) 10 sigma bonds. 1 pi bo	ond and one lone pairs	V	
	d) 9 sigma bonds. 2 pi bon	nd and one lone pairs		
71.	Which of the following are	e isoelectronic and isostruc	ctural?	
	$NO_{3}^{-}, CO_{3}^{2-}, ClO_{3}^{-}, S$	SO ₂		
	a) NO_3^-, CO_3^{2-}	b) SO_3, NO_3	c) ClO_3^-, CO_3^{2-}	d) CO_3^{2-} , SO ₃
72.	Which of the following is p	paramagnetic with bond or	·der 0.5?	
	a) F ₂	b) H_2^+	c) N ₂	d) 0_{2}^{-}
73.	Water has high heat of var	porization due to:		, <u>-</u>
	a) Covalent bonding	b) H-bonding	c) Ionic bonding	d) None of these
74.	The C – H bond distance is	s the longest in	, ,	-
	a) C_2H_6	b) C ₂ H ₂	c) C ₂ H ₂ Br ₂	d) C_2H_4
75.	If the electronegativity dif	ference between two atom	s A and B is 2.0, then the pe	ercentage of covalent
	character in the molecule	is		
	a) 54%	b) 46%	c) 23%	d) 72%
76.	Structure of ICl ₂ ⁻ is:			
	a) Trigonal			
	b) Octahedral			
C	c) Square planar			
	d) Distorted trigonal pyra	midal		
77.	Polar covalent compounds	s are soluble in:		
	a) Polar solvents	b) Non-polar solvents	c) Concentrated acids	d) All solvents
78.	N_2 O is isoelectronic to CO	$_2$ and N_3^- . Which of the foll	owing is the structure of N ₂	0?
	N N	O = O = N	CJ N = U = N	N O
79.	Which does not show hvd	rogen bonding?		
	a) C ₂ H ₅ OH	b) Liquid NH ₃	c) H ₂ 0	d) Liquid HBr

80.	All bond angles are exactly equal to 109° 28` in		
	a) Methyl chloride	b) Iodoform	
	c) Chloroform	d) Carbon tetrachloride	
81.	Which among the following has highest ionic radius?	?	
	a) F^- b) B^{3+}	c) 0 ²⁻	d) Li ⁺
82.	Zero dipole moment is possessed by		-
	a) PCl_3 b) BF_3	c) ClF ₃	d) NH3
83.	The number of electrons involved in the bond forma	tion of N ₂ molecule	2 3
	a) 2 b) 4	c) 6	d) 10
84.	Which one of the following orders is not in according	g with the property stated a	against it?
	a) $F_2 > Cl_2 > Br_2 > I_2$: Electronegativity	B b b	
	h) $F_a > Cl_a > Br_a > L_a$ Bond dissociation energy	,	
	c) $F_0 > CI_0 > Br_0 > I_0$: Ovidising nower		
	d) $HI > HBr > HCl > HF \cdot Acidic property in water$		
85	What is the dominant intermolecular force or hond t	hat must be overcome in co	onverting liquid CH ₂ OH to a
00.	oas?		onverting nyunu ongorn to u
	a) London dispersion force	Ć.	
	h) Hydrogen honding		
	c) Dipole-dipole interaction		
	d) Covalent honds		
86	The incorrect statements regarding honding molecu	lar orbitals because	
00.	a) Bonding molecular orbitals possess less energy th	an combining atomic orbit	als
	h) Bonding molecular orbitals have low electron der	sity between the two nucle	
	c) Every electron in bonding molecular orbitals cont	ributes to attraction betwee	en atoms
	d) They are formed when the lobes of the combining	atomic orbitals have same	sign
87	A coordinate bond is a dative covalent bond Which	of the below is true?	31611.
07.	a) Three atom form hond by sharing their electrons	h) Two atoms form hond	hy sharing their electrons
	c) Two atoms form bond and one of them provide	sd) Two atoms form bo	and by sharing electrons
	hoth electrons	obtained from third at	om
88.	The bond length between C – C bond in sn^2 hybridis	ed molecule is	
001	a) $1 2 \text{ Å}$ b) $1 39 \text{ Å}$		d) 1 54 Å
89	The electronegativity values of $C + O N$ and S are 2	5 2 1 3 5 3 0 and 2 5 resn	ectively Which of the
07.	following honds is most nolar?	.0, 2.1, 5.0, 5.0 and 2.5 resp	cetively. Which of the
	a) C—H b) N—H	c) S—H	д) О—Н
90	Which of the following has largest size?		
<i>.</i>	a) Al b) Al ⁺	c) Al^{2+}	d) Al ³⁺
91	In which of the following the hond length betwee	e hybridised carbon atom	and other carbon atom is
<i>)</i> 1.	minimum?		
	a) Pronvne b) Pronene	c) Butane	d) Pronane
92	Which is expected to conduct electricity?	cj butane	ujiiopane
, 2.	a) Diamond b) Molten sulphur	c) Molten KCl	d) Crystalling NaCl
93	Matals are good conductors of electricity because th	ey contain	uj ci ystannie Nači
55.	a) Ionic honds	b) A network structure	
~	c) Very few yalance electrons	d) Free electrons	
94	The species having nyramidal shape is		
74.	a) SO	c) SiO^{2-}	d) OSE
05	a) U_3 U) DI Γ_3 The attraction that non-noise melocules have for each	$c_J \sigma \sigma_3$	$u_{J} \cup \sigma_{2}$
73.	a) Hydrogen bonding	in other is primarily caused	<i>i</i> Uy.
	a) Tryulogen bonully		
	a) High ionication energy		
	cj mgn iomsation energy		

d) Van der Waals' forces

- 96. In HCHO carbon atom has hybridisation:
- a) sp b) sp^2 c) sp^3 d) None of these 97. Which of the following species has four lone pairs of electrons in its outer shell?
- a) I b) 0^- c) Cl^- d) He
- 98. For *AB* bond if per cent ionic character is plotted against electronegativity difference $(X_A X_B)$, the shape of the curve would look like

The correct curve is

a) A

c) *C*

- d) *D*
- 99. Chlorine atom, in its third excited state, reacts with fluorine to form a compound *X*. The formula and shape of *X* are
 - a) ClF₅, pentagonal
 - b) ClF₄, tetrahedral
 - c) ClF₄, pentagonal bipyramidal
 - d) ClF₇, pentagonal bipyramidal
- 100. The formation of the oxide ion $O^{2-}(g)$ requires first an exothermic and then an endothermic step as shown below,

 $O(g) + e \rightarrow O^{-}(g); \qquad \Delta H = -142 \text{ kJ/mol}$ $O^{-}(g) + e \rightarrow O^{2^{-}}(g); \qquad \Delta H = 844 \text{ kJ/mol}$

This is because:

a) 0^- ion has comparatively larger size than oxygen atom

b) *B*

- b) Oxygen has high electron affinity
- c) 0^- ion will lead to resist the addition of another electron
- d) Oxygen is more electronegative

101. In which of the following molecules are all the bonds not equal?

a) AlF_3 b) NF_3 c) ClF_3 d) BF_3 102. Which of the following compound is covalent?a) H_2 b) KClc) Na_2S d) CaO103. Which of the following molecular species has unpaired electron (s)?a) N_2 b) F_2 c) O_2^- d) $O_2^{2^-}$

104. The correct order of bond angles is:

 \checkmark a) PF₃ < PCl₃ < PBr₃ < PI₃

b) $PF_3 < PBr_3 < PCl_3 < PI_3$

c) $PI_3 < PBr_3 < PCl_3 < PF_3$

d) $PF_3 > PCl_3 < PBr_3 < PI_3$

105. If the bond length and dipole moment of a diatomic molecule are 1.25 A and 1.0 D respectively, what is the per cent ionic character of the bond?

106. The molecule which does not exhibit dipole moment is

a) NH ₃	b) CHCl ₃	c) H ₂ 0	d) CCl ₄			
107. N ₂ accept electron an	nd convert into N_2^- , where thi	s electron goes?				
a) Antibonding π -m	a) Antibonding π -molecular orbital					
b) Bonding π-molec	b) Bonding π-molecular orbital					
c) σ -bonding molect	ular orbital					
d) σ -antibonding mo	olecular orbital					
108. The correct order of	radii is:					
a) N < Be < B	b) $F^- < 0^{2-} < N^{3-}$	c) Na < Li < K	d) $Fe^{3+} < Fe^{2+} < Fe^{4+}$			
109. The bond order is m	aximum in:					
a) H ₂	b) H ₂ ⁺	c) He ₂	d) He ₂ ⁺			
110. Which of the followi	ng atoms has minimum coval	ent radius?				
a) Si	b) N	c) C	d) B			
111. The screening effect	of <i>d</i> -electrons is:					
a) Equal to the p -ele	ectrons					
b) Much more than p	<i>p</i> -electrons					
c) Same as <i>f</i> -electro	ons					
d) Less than <i>p</i> -electr	rons		A Y			
112. Which of the followi	ng statement is wrong?					
a) The stability of hy	drides increase from NH ₃ to	BiH ₃ in group 15 of the pe	riodic table.			
b) Nitrogen cannot f	form $d\pi - p\pi$ bond.					
c) Single N—N bond	l is weaker than the single P—	-P bond.				
d) N ₂ O ₄ has two res	onance structure					
113. The molecule having	g permanent dipole moment i	s:				
a) SF ₄	b) XeF ₄	c) SiF ₄	d) BF ₃			
114. Unusually high boili	ng point of water is result of					
a) Intermolecular hy	vdrogen bonding	b) Intramolecular hyd	lrogen bonding			
c) Both intra and int	er molecular hydrogen bondi	ing d) High specific heat				
115. Which of the followi	ng is least ionic?					
a) CaF ₂	b) CaBr ₂	c) CaI ₂	d) CaCl ₂			
116. What bond order do	es O_2^{2-} have?					
a) 1	b) 2	c) 3	d) 1/3			
117. A compound contain	ns <i>X, Y</i> and <i>Z</i> atoms. The oxid	lation states of X , Y and Z	are $+2$, $+2$ and -2 respectively.			
The possible formul	a of the compound is					
a) XYZ ₂	b) $Y_2(XZ_3)_2$	c) $X_3(Y_4Z)_2$	d) $X_3(YZ_4)_3$			
118. Which one of the fol	lowing is a non-polar molecul	le?				
a) CCl ₄	b) CHCl ₃	c) CH_2Cl_2	d) CH ₃ Cl			
119. Which one of the fol	lowing has the regular tetrah	edral structure?				
(Atomic numbers B	= 5, S = 16, Ni = 28, Xe = 54))				
a) XeF ₄	b) SF ₄	c) BF ₄	d) $[Ni(CN)_3]^{2-1}$			
120. If the dipole momen	t of toluene and nitro-benzen	ie are 0.43 D and 3.93 D, t	hen what is the expected dipole			
moment of <i>p</i> -nitro to	oluene?					
a) 3.50 D	b) 2.18 D	c) 4.36 D	d) 5.30 D			
121. Which of the followi	ng is most stable?					
a) Pb ²⁺	b) Ge ²⁺	c) Si ²⁺	d) Sn ²⁺			
122. In which of the follo	wing compound <i>sp</i> ² hybridis	ation is absent?				
a) $CH_2 = CH - CH =$	= CH ₂	b) $CH \equiv C - CH_2 - CH_2$	1 ₃			
c) $CH_2 - CH = CH_2$		d) $CH_2 = CH - CH_2 - CH_2$	CH ₃			
123. Which one of the fol	lowing pairs of species has th	e same bond order:				
a) NO ⁺ and CN ⁺	b) CN^- and NO^+	c) CN^- and CN^+	d) O_2^- and CN^-			
124. Which of the followi	ng characteristics regarding h	nalogens is not correct?				

a) Lewis acids b) Hydrophilic	c) Nucleophiles	d) Lewis bases
135. The molecule having three f	olds of axis of symmetry	is:	
a) NH ₃ b) PCl ₅	c) SO ₂	d) CO ₂
136. The structure of ICl ₂ is:			
a) Trigonal			
b) Octahedral			
c) Square planar			
d) Distorted trigonal bipyra	mid		
137. Among the following the mo	lecule with the highest d	ipole moment is	
a) CH ₃ Cl b) CH_2Cl_2	c) CHCl ₃	d) CCl₄
138. Which of the following is not	t isostructural with SiCl ₄	?	
a) PO_4^{3-} b) NH ₄ +	c) SCl ₄	d) SO ₄ ²⁻
139. A molecule which cannot ex	ist theoretically is:		
a) SF ₄ b) OF ₂	c) OF ₄	d) O_2F_2
140. An atom <i>X</i> has three valence	e electrons and atom Y ha	is six valence electrons. Th	e compound formed
between them will have the	formula		
a) $X_2 Y_6$ b) XY_2	c) $X_2 Y_3$	d) $X_{3}Y_{2}$
141. Which one is polar molecule	among the following?		
a) CH ₄ b) CCl₄	c) CO_2	d) H ₂ O
142. Shape of molecules is decide	ed by:		5 2
a) Sigma bond	2		
b) π-bond			
c) Both sigma and π -bonds			
d) Neither sigma nor π -bond	ls 🖌		
143. The shape of carbon dioxide	is 🔺	$\mathbf{\nabla}^{\prime}$	
a) Pyramidal b) Tetrahedral	c) Planar	d) linear
144. The correct ionic radii order	is:		2
a) $N^{3-} > O^{2-} > F^- > Na^+ >$	$> Mg^{2+} > Al^{3+}$		
b) $N^{3-} > Na^+ > O^{2-} > F^-$	$> Mg^{2+} > Al^{3+}$		
c) $Na^+ > O^{2-} > N^{3-} > F^- >$	$> Mg^{2+} > Al^{3+}$		
d) $0^{2-} > F^- > Na^+ > N^{3-} >$	$> Mg^{2+} > Al^{3+}$		
145. Which is not linear?	Ň		
a) CO_2 b) HCN	c) C ₂ H ₂	d) H ₂ O
146. Hybridisation of oxygen in d	iethyl ether is	, , , , , , , , , , , , , , , , , , , ,	5 2
a) <i>Sp</i> b	sp^{2}	c) sp^3	d) sp^3d
147. What is the effect of more el	ectronegative atom on th	e strength of ionic bond?	5 L
a) Increases b) Decreases	c) Remains the same	d) None of these
148. Which of the following two a	are isostructural?	,	2
a) XeF_2 , IF_2 b) NH_3 , BF_3	c) CO_3^{2-}, SO_3^{2-}	d) PCl ₅ , ICl ₅
149. NF ₃ is:			
a) Non-polar compound			
b) Electrovalent compound			
c) Having low value of dipol	e moment than NH ₃		
d) Having more dipole mom	ent than NH ₃		
150. Molecular size of ICl and Br_2	is nearly same, but boili	ng point of ICl is about 40°	C higher than Br ₂ . This
might be due to:	, , ,	or i i i i i i i i i i i i i i i i i i i	0 1 2
a) I—Cl bond is stronger that	an Br—Br bond		
b) Ionisation energy of $I < ic$	onisation energy of Br		
c) ICl is polar where as Br_{a} i	s non-polar		
d) The size of $I > size of Br$	- r ····		
· · · · · · · · · · · · · · · · · · ·			

151. Which molecule is linear	r?		
a) H ₂ S	b) NO ₂	c) ClO ₂	d) CO ₂
152. Which of the following s	hows minimum melting po	oint?	
a) Naphthalene	b) Diamond	c) NaCl	d) Mn
153. Which of the following d	loes not have a lone pair or	n the central atom?	
a) NH ₃	b) PH ₃	c) BF ₃	d) PCl ₃
154. Molecular orbital theory	y was given by		
a) Kossel	b) Mosley	c) Mulliken	d) Werner
155. NH_3 has a net dipole mo	oment, but boron trifluorid	e (BF_3) has zero dipole mor	nent, because:
a) B is less electronegat	ive than N		
b) F is more electronega	ative than H		
c) BF ₃ is pyramidal whit	le NH ₃ is planar		
d) NH ₃ is pyramidal whi	ile BF_3 is trigonal planar		
156. Proton plays an importa	ant role inbonding.		
a) Electrovalent	b) Hydrogen	c) Covalent	d) Coordinate
157. Which represents a colle	ection of isoelectronic spec	ties?	
a) Be. Al ³⁺ . Cl ⁻	b) Ca^{2+} , Cs^+ , Br	c) Na ⁺ , Ca ²⁺ , Mg ²⁺	d) N^{3-} , F^{-} , Na^{+}
158. An electrovalent compo	und does not exhibit space	isomerism due to:	
a) Presence of ions			
b) High melting point			
c) Strong electrostatic f	orces between constituent	ions	
d) Non-directional natu	re of electrovalent bond		
159 In which molecule Sulph	ur atom is not sn ³ -hybridi	ized?	
2 2 2	h) SF.		d) None of these
160 In which one of the follo	0 $31 \frac{4}{4}$	c_{1} c_{2}	zation which is not the same
as that present in other	throp?	tom has the type of hybridi.	Zation which is not the same
		c) $Sh(l^2-$	d) PCI
a) Sr_4 161 The radii of E E ⁻ O and	0^{2-} are in the order of	cj 3001 ₅	
$2) O^2 - \Sigma E^- \Sigma E > O$	b) $E^- > O^2 - > E > O$	$() 0^{2-} > 0 > E^{-} > E$	d) $0^{2-} > E^{-} > 0 > E^{-}$
d = 0 $r = r = 0$	UJF 20 2F20	U = V = V = V	$u_{1} \cup r = 0 > r$
102. The correct order of dec	h $Mn > Cr > Ti > V$	c) Ti \searrow \bigvee $\sum (r > Mr)$	d) $Cr > Mr > V > Ti$
a) $V > MII > CI > II$	$U_j M H > C I > H > V$	$C_{J} \Pi > V > C_{I} > MII$	
163. How many δ and π -bond	us are present in given con	ipoullu?	
$FII = CI = C = C_2 II_5$	\sim		
a) 10 σ and 4 σ - honds		b) 22 σ and 4π – bonds	
a) 190 and 4π – bonds	,	d) 26 σ and 4 π – bonds	
164 C Clhand is stronger	, then C. I hand hereway	$u_j 200 anu 4 n = bonus$	
	than C – I bolid, because		
a) $C = CI bond is more in$	onic than C – I	b) C – Ci bond is polar c	ovalent bond
c) C – Cl bond is more c	ovalent than C – I	d) C – Cl bond length is	longer than C – I
165. The ICl molecule is:			
a) Purely covalent			
b) Purely electrovalent			
c) Polar with negative e	nd on chlorine		
d) Polar with negative e	nd on iodine		
166. Which of the following s	ilver salts is insoluble in w	rater?	
a) AgClO ₄	b) Ag ₂ SO ₄	c) AgF	d) AgNO ₃
167. Silicon has 4 electrons in	n the outermost orbit. In fo	rming the bond:	
a) It gains electrons	b) It losses electrons	c) It shares electrons	d) None of these
168. The shape of gaseous Sn	ICl ₂ is		

a) Tetrahedral	b) Linear	c) Angular	d) T-shape
169. Chlorine atom tends to	acquire the structure of:		
a) He	b) Ne	c) Ar	d) Kr
170. The <i>d</i> – orbital involved	l in $sp^3 d$ – hybridisation is		
a) $d_{x^2 - y^2}$	b) d_{xy}	c) d_{z^2}	d) d_{zx}
171. When O_2 is converted i	nto 0^+_2 :	, <u>,</u>	5 24
a) Both paramagnetic c	haracter and bond order in	crease	
b) Bond order decrease	es		
c) Paramagnetic charac	cter increases		· · · ·
d) Paramagnetic charac	cter decreases and the bond	order increases	\sim
172. Intramolecular hydroge	en bond is present in		
a) Water	b) <i>o</i> -nitrophenol	c) <i>p</i> -nitrophenol	d) methylamine
173. A pair of compounds w	hich have odd electrons in t	he group NO, CO, ClO ₂ , N ₂ O	$_{\rm s}$, SO ₂ and O ₂ are
a) NO and ClO_2	b) COI and SO_2	c) ClO ₂ and CO	d) SO ₂ and O ₃
174. According to VSEPR the	eory the repulsion between	different pair (lone or bond	d) of electrons obey the order
a) <i>lp bp lp lp bp bp</i>	5 1	b) <i>lp bp bp bp lp lp</i>	
c) <i>lp lp lp bp bp bp</i>		d) <i>bp bp lp lp lp bp</i>	
175. The bond between two	identical non-metal atoms	has a pair of electrons:	>
a) Unequally shared be	tween the two		
b) Equally shared betw	een the two		
c) Transferred fully fro	m one atom to another		
d) None of the above			
176. The bond angle in AsH _a	is greater than that in		
a) NH ₂	b) H ₂ O	c) BCl ₂	d) None of these
177. The correct order of inc	creasing electropositive cha	racter among Cu, Fe and Ma	g is:
a) Cu ≈ Fe < Mg	b) Fe < Cu < Mg	c) Fe < Mg < Cu	d) Cu < Fe < Mg
178. H—O—H bond angle in	H_2 O is 104.5° and not 109°	28' because of:	
a) High electronegativi	ty of oxygen		
b) Bond pair-bond pair	repulsion		
c) Lone pair-lone pair r	epulsion		
d) Lone pair-bond pair	repulsion		
179. The bond order in O_2^+ is	s equal to bond order in:		
a) N_2^+	b) CN^{-}	c) CO	d) NO ⁺
180. The electron affinity for	r inert gases is likely to be:	,	,
a) High	b) Small	c) Zero	d) Positive
181. The true statements fro	om the following are	,	,
1.PH ₅ and BiCl ₅ do not	exist		
$2.p\pi - d\pi$ bond is press	ent in SO ₂		
3.Electrons travel at the	e speed of light		
4.SeF₄ and CH₄ have sa	me shape		
5.1^{+}_{2} has bent geometry	- <u>r</u>		
a) 1.3	b) 1.2.5	c) 1.3.5	d) 1.2.4
182, 1.3-butadiene has:	~) _)_)		~; _;_; _
a) 6σ and 2π -bonds	b) 2σ and 2π -bonds	c) 9σ and 2π -bonds	d) 6σ and 2π -bonds
183. The bond between ator	ns of two elements of atomi	c number 37 and 53 is:	
a) Covalent	b) Ionic	c) Coordinate	d) Metallic
184. In methane the hond ar	ngle is	of coordinate	
a) 180°	b) 90°	c) 109°	d) 120°
185. One would expect the e	lemental form of Cs at room	temperature to be	~, _
a) A network solid	h) A metallic solid	c) Non-nolar liquid	d) An ionic liquid
aj miletwork solid	of it metanic solid	cj non polar nqulu	a, mi ionic nquid

186. Which of the following is false? a) Glycerol has strong hydrogen bonding b) Glycol is a poisonous alcohols c) Waxes are esters of higher alcohols with higher acids d) Alkyl halides have higher b.p. than corresponding alcohols 187. Ionic radii are: a) $\propto \frac{1}{\text{effective nuclear charge}}$ b) $\propto \frac{1}{(\text{effective nuclear charge})^2}$ c) \propto effective nuclear charge d) \propto (effective nuclear charge)² 188. Which of the following statements is incorrect? a) He₂ does not exist because its bond order is zero b) O_2 , O_2^- and O_2^+ are all paramagnetic c) Any two atomic orbitals can combine to form two molecular orbitals d) $\pi(2p_x)$ and $\pi(2p_y)$ are degenerate molecular orbitals 189. Which of the following pairs will from the most stable ionic bond? b) Mg and F c) Li and F d) Na and F a) Na and Cl 190. Among NaF, NaCl NaBr and NaI, the NaF has highest melting point because: a) It has maximum ionic character b) It has minimum ionic character c) It has associated molecules d) It has least molecular weight 191. The planar structure of BF_3 can be explained by the fact that BF_3 is b) *sp*² hybridised a) *sp* hybridized c) *sp*³ hybridised d) $sp^3 d$ hybridized 192. The correct order of bond order value among the following is (ii) N0⁺ (i) NO⁻ (iv) NO²⁺ (iii)NO $(v) NO^{2-}$ a) (i) < (iv) < (iii) < (ii) < (v) b) (iv) = (ii) < (i) < (v) < (*iii*) c) (v) < (i) < (iv) = (iii) < (ii) d) (ii) < (iii) < (iv) < (i) < (v) 193. The bond between chlorine and bromine in BrCl₃ is: a) Ionic b) Non-polar c) Polar with negative end on Br⁻ d) Polar with negative end on Cl⁻ 194. Which of the following has regular tetrahedral shape? a) $[Ni(CN)_4]^{2-}$ b) SF_4 c) [BF₄]⁻ d) XeF₄ 195. Which of the following will have large dipole moment? NH_2 NH_2 NO₂ NH_2 b) a) NO₂ NO_2

196. PCl₅ exists but NCl₅ does not because:

a) Nitrogen has no vacant 2*d*-orbitals

b) NCl ₅ is unstable		
c) Nitrogen atom is much smaller than phosphor	us	
d) Nitrogen is highly mert		
197. In which of the following pairs the two species ar	e not isostructural?	
a) PCI_4^- and $SiCI_4$ b) PF_5 and BrF_5	c) AlF ₆ ^{3–} and SF ₆	d) CO_3^2 and NO_3^2
198. The molecule having a pyramidal shape out of the	e following is	
a) CO_2 b) BF_3	c) SF ₄	d) NH ₃
199. If Na ⁺ ion is larger than Mg^{2+} ion and S^{2-} is large	r thanCl [–] ion, which of the f	ollowing will be stable soluble
in water?		
a) Sodium chloride b) Sodium sulphide	c) Magnesium chloride	d) Magnesium sulphide
200. An atom of an element <i>A</i> has three electrons in	its outermost orbit and the	at of B has six electrons in its
outermost orbit. The formula of the compound be	etween these two will be	
a) A_3B_6 b) A_2B_3	c) A_3B_2	a) A_2B
201. The energy of σ 2s-orbital is greater than σ * 1s o	rbital because:	Y
a) σ 2s orbital is bigger than σ * 1s orbital		\sim
b) σ 2s orbital is a bonding orbital whereas, $\sigma * 15$	s is an antibonding orbital	
c) σ 2s orbital has a greater value of <i>n</i> than $\sigma * 1s$	orbital	•
a) None of the above		
202. The bond angle in ammonia molecule is	a) $106945'$	d) 100°20'
a) $90^{\circ}3$ b) $91^{\circ}8$ 202 The compound in which the number of d in here	$CJ 100^{\circ}45$	$(1) 109^{-}28$
203. The compound in which the number of $a^{-}p$ bold	a) Vol	d $V_{0}E$
a) Aer_4 b) AeO_3 204 The correct order of bond angles (smallest first) i	$C_{\rm J}$ AEO_4	u) xer ₆
204. The correct of def of bond angles (smallest mist)	m_2 , m_3 , DF_3 and Sm_4 is	- PE
a) $\Pi_2 S < S \Pi_4 < M \Pi_3 < D \Gamma_3$ c) $\Pi_2 S < N \Pi_4 < S \Pi_4 < P \Gamma_4$	d) H S < NH < RE	< бгз
205 A covalent molecule $4R$, has pyramidal structur	$m_2 = m_2 = m_3 = m_3 = m_3 = m_3$	and bond nair of electrons in
the molecule are respectively	e. The number of fone pair	and bond pair of cicculous in
a) 2 and 2 b) 0 and 4	c) 3 and 1	d) 1 and 3
206 Be in BeCl ₂ undergoes	cj 5 and 1	a) I and 5
a) Diagonal hybridisation	b) Trigonal hybridisatio	on
c) Tetrahedral hybridisation	d) No hybridisation	
207. Which statement is wrong?	-)	
a) Hybridisation is the mixing of atomic orbitals	prior to their combining into	o molecular orbitals
b) sp^2 -hybrid orbitals are formed from two p-ato	mic orbitals and one s-aton	nic orbitals
c) dsp^2 -hybrid orbitals are all at 90° to one anoth	ner	
d) d^2sp^2 -hybrid orbitals are directed towards the	e corners of a regular tetrah	edron
208. In the anion HCOO ⁻ the two carbon-oxygen bon	ds are found to be of equal	length. What is the reason for
it?	-	
a) Electronic orbits of carbon atom are hybridise	d	
b) The C=O bond is weaker than the C $-$ O bond		
c) The anion HCOO [–] has two resonating structur	es	
d) The anion is obtained by removal of a proton f	rom the acid molecule	
209. Which of the following molecules has three fold a	xis of symmetry?	
a) NH_3 b) C_2H_4	c) CO ₂	d) SO ₂
210. Oxygen and the oxide ion have the		
a) Same proton number	b) Same electronic conf	figuration
c) Same electron number		
	d) Same size	
211. Valence bond theory of metallic bond was given b	d) Same size by	
211. Valence bond theory of metallic bond was given ba) Daltonb) Drudel	d) Same size by c) Fajan	d) Pauling

21	a) $C > N > 0 > F$ 3. The molecule which has 7	b) 0 > N > F > C Γ – shaped structure is	c) $0 > F > N > C$	d) F > 0 > N > C
	a) PCl ₂	b) ClF ₂	c) NH2	d) BCl2
21	4. As a result of resonance:		-7 3	
	a) Bond length decreases			
	b) Energy of the molecule	es decreases		
	c) Stability of the molecu	le increases		
	d) All are correct			
21	5. The pair of species with t	he same bond order is:		\frown
	a) NO.CO	b) N_2, O_2	c) 0^{2-}_{2} , B ₂	d) 0^+_{2} , NO ⁺
21	6. Which of the following m	olecules has pentagonal bir	ovramidal shape?	
	a) PF-	b) SF ₂ I	c) XeF	d) [Fe(CN), 1^{3}
21	7. The number of types of h	onds between two carbon a	atoms in calcium carbide is	
- 1	a) One sigma two ni	h) One sigma, one ni	c) Two sigma, one ni	d) Two sigma, two pi
21	8 The bond angle between	H_0 H in ice is closest to)	a) i tio signia, ciro pi
21	a) 115°	h) 109°28′	,. 	d) 90 °
21	9 If a molecule <i>MX</i> _a has zer	o dipole moment the sigm:	honding orbitals used by	M (at No < 21) is:
41	$\begin{array}{c} \textbf{2} \\ $	h) sn-hybrid	$c) sn^2$ -hybrid	d) sn^3 -hybrid
22	0 Which combination of at	ons can form a nolar covale	ej sp hybrid	
	a) H and H	h) H and Br	c) N and N	d) Na and Br
22	1 The bond strength in Ω^+	Ω_{-} Ω_{-}^{-} and Ω_{-}^{2-} follows the	order	aj Na ana bi
	11 110 bolid strength in 0_2 , 21 $0^{2-} > 0^{-} > 0 > 0^{+}$	b) $0^+ > 0 > 0^- > 0^{2-}$	c) $0 > 0^{-} > 0^{2-} > 0^{+}$	d) $0^{-} > 0^{2^{-}} > 0^{+} > 0$
22	a) $0_2 > 0_2 > 0_2 > 0_2$ 2 The shape of YeE molecu	$0_1 0_2 > 0_2 > 0_2 > 0_2 > 0_2$	$C_1 C_2 > C_2 > C_2 > C_2$	$u_1 v_2 > v_2 > v_2 > v_2 > v_2$
	2. The shape of Xer_4 indexination 2^3	ule allu llybriulsauoli ol xel	b) Square planar and den	2
	a) fettallettal allt sp	42	d) Octobed related and $an^3 d^2$	
22	c) Square planar and sp^{-1}		uj octaneurai anu sp [•] u	
22	r_2 1011, the bolid of def	IS:	a) 1/2	d) 1
22	a) Zelo	0) 1/2	CJ -1/2	u) I
22	a) Chycorino	III: b) Water	о H S	d) HE
22	a) Glycel life	b) water	$C_{1} \Pi_{2} S$	uj IIF
		b) HBr		d) HE
22	a) IICI 6 The angle between the or	verlapping of one s-orbital	c_{j} III and one <i>n</i> -orbital is:	uj m ^r
	a) 100°	b) 120°	r^{-01} 100°20'	d) 120°60'
22	aj 100 7. Ugu manu handa ara tha	0) 120 no in 2	CJ 109 20	uj 120 00
22				
	a) 14 σ, 8π	b) 18 σ, 8π	c) 19 σ, 4π	d) 14 σ, 2π
22	8. Which is the correct state	ement about σ and π molect	ular orbitals? Statements a	re
	(i) π -bonding orbitals are	e ungerade		
	(ii) π -antibonding orbital	ls are ungerade		
	(iii) σ -antibonding orbita	lls are gerade		
4	a) (i) only	b) (ii) and (iii) only	c) (iii) only	d) (ii) only
22	9. Among the following stat	ement, the correct stateme	nt about PH ₃ and NH ₃ is:	
	$_{2}$ NH ₃ is a better electro	n donor because the lone p	air of electron occupies spł	nerical <i>s</i> -orbital and is less
	directional			
	PH ₃ is a better electron	n donor because the lone pa	air of electron occupies <i>sp</i> ³	-orbital and is more
	directional	-	- -	
	$_{\rm NH_3}$ is a better electro	n donor because the lone p	air of electron occupies sp ³	³ -orbital and more
	directional	-	- •	

d) PH₃ is a better electron donor because the lone pair of electron occupies spherical *s*-orbital and is less directional

230. Which is expected to have	ve linear structure?		
a) SO_2	b) CO ₂	c) CO_3^{2-}	d) SO_4^{2-}
231. The bond angle in PH_3 is	S:		
a) Much lesser than NH ₃	b) Equal to that in NH_3	c) $\frac{Much greater than in}{NH_3}$	d) Slightly more than in NH ₃
232. Carnallite in solution in a) K ⁺ , Mg ²⁺ , Cl ⁻	water shows the properties b) K ⁺ , Cl ⁻ , SO ²⁻ , Br ⁻	s of c) K ⁺ , Mg ²⁺ , CO ₃ ²⁻	d) K ⁺ , Mg ²⁺ , Cl ⁻ , Br ⁻
255. A simple of a coordinate		o) C L	
234. In the series otherne ath	UJ MII3 vlana and acatulana tha C_	-H bond energy is:	uj 11 ₂ 30 ₄
a) The same in all the th	ree compounds	n bond energy is.	
b) Greatest in ethane	i ce compoundo		
c) Greatest in ehtvlene			
d) Greatest in acetylene		4	
235. In which molecule the va	an der Waals' force is likely	to be the most important in	n determining the m.p. and
b.p.?			
a) Br ₂	b) CO	c) H ₂ S	d) HCl
236. Identify the wrong state	ment in the following:		
a) Atomic radius of the e	elements increases as one n	noves down the first group	of the periodic table
b) Atomic radius of the e periodic table	elements decreases as one r	noves across from left to ri	ght in the 2nd period of the
c) Amongst isoelectroni	c species, smaller the positi	ve charge on the cation, sm	aller is the ionic radius
d) Amongst isoelectroni	c species, greater the negat	ive charge on the anion, lar	ger is the ionic radius
237. (I)1, 2-dihydroxy benze	ne		
(II) 1, 3-dihydroxy benz	ene	Y	
(III) 1, 4-dihydroxy ben:	zene		
(IV) Hydroxy benzene			
The increasing order of	boiling points of above men	tioned alcohols is	
a) I < <i>II</i> < <i>III</i> < <i>IV</i>		b) I < <i>II</i> < <i>IV</i> < <i>III</i>	
c) IV < <i>I</i> < <i>II</i> < <i>III</i>		d) IV < <i>II</i> < <i>I</i> < <i>III</i>	
238. Dipole moment is shown	n by		
a) <i>cis</i> - 1, 2-dichloro etha	ane	b) <i>trans</i> -1, 2-dichloro eth	nane
c) <i>trans</i> -1 2-dichloro-2	peptene	d) Both (a) and (c)	
239. Compounds formed by s	p^3d^2 -hybridization will ha	ve configuration:	
a) Square planar			
b) Octahedral			
c) Trigonal bipyramidal			
d) Pentagonal bipyrami	dal		
240. In which molecular are a	all atoms coplanar?		
a) PF ₃	b) NH ₃	c) BF ₃	d) CH ₄
241. The AsF_5 molecule is tri	gonal bipyramidal.The hybi	rid orbitals used by the As a	itoms for bonding are
a) $d_{x^2-y^2}$, d_{z^2} , s, P_x , P_y	b) d_{xy} , s, P_x , P_z	c) $s, P_x, P_y, P_z, d_{z^2}$	d) $d_{x^2-y^2}$, s, P_x , P_y
242. The bond order of N_2^+ is			
a) 1.5	b) 3.0	c) 2.5	d) 2.0
243. CO_2 is isostructural with			
a) C_2H_2	b) SnCl ₂	c) NO_2	d) MgCl ₂
244. The compound with the	maximum dipole moment a	among the following is:	
a) <i>p</i> -dichlorobenzene	b) <i>m</i> -dichlorobenzene	cJ o-dichlorobenzene	d) Carbon tetrachloride

245. Which of the following bo	onds require the largest am	ount of energy to dissociate	e the bond concerned?
a) H—H bond in H ₂	b) C—H bond in CH ₄	c) N \equiv N bond in N ₂	d) $0 = 0$ bond in 0_2
246. The sequence that corre	ctly describes the relative	bond strength pertaining	to oxygen molecule and its
cation or anion is			
a) $0^{2-}_2 > 0^2 > 0^2 > 0^+_2$		b) $0_2 > 0_2^+ > 0_2^- > 0_2^{2-}$	
c) $0_2^+ > 0_2 > 0_2^{} > 0_2^{}$		d) $0_2^+ > 0_2 > 0_2^- > 0_2^{2-}$	
247. The type of hybridisation	in XeF4 is		
a) dsp^2	b) sp ³ d	c) sp^3d^2	d) $sp^{3}d^{3}$
248. What bond order does Lig	₂ have?		· · ·
a) 3	b) 1	c) 2	d) 0
249. Which have zero dipole m	noment?		
a) 1,1-dichloroethene			
b) Cis-1, 2-dichloroethen	e		
c) <i>trans</i> -1, 2-dichlorothe	ene		
d) None of the above			
250. Strongest bond is formed	by the head on overlappin	g of:	V ·
a) $2s$ -and $2p$ -orbitals	b) 2p- and 2p-orbitals	c) 2 <i>s</i> - and 2 <i>s</i> - orbitals	d) All of these
251. Hybridization state of I in	$1 \text{ ICl}_2^+ \text{ is :}$		
a) dsp^2	b) sp	c) sp^2	d) sp^3
252. Arrange the following con	mpound in order of increas	ing dipole moment:	<i>.</i>
Toluene (I)	<i>m</i> -dichlorobenzene (II)		
<i>o</i> -dichlorobenzene (III)	<i>p</i> -dichlorobenzene (IV)		
a) I < IV < II < III	b) IV < I < II < III	c) IV < I < III < II	d) $IV < II < I < III$
253. Which has maximum cov	alent character?		,
a) SiCl₄	b) MgCl ₂	c) NaCl	d) AlCl₃
254. Which species does not e	xist?		- 7 - 3
a) $(SnCl_{6})^{2-}$	b) $(GeCl_{6})^{2-}$	c) $(CCl_6)^{2-}$	d) $(SiCl_{6})^{2-}$
255. Among the following whi	ch has the highest cation to	anion size ratio?	
a) CsI	b) CsF	c) LiF	d) NaF
256. The dipole moment of H	Br is 1.6×10^{-30} cm and i	nter – atomic spacing is 1	Å. The % ionic character of
HBr is			
a) 7	b) 10	c) 15	d) 27
257. When an element of very	low ionisation potential is	allowed to react with an ele	ement of very high electron
affinity, we get:			
a) A weak ionic bond	b) A strong ionic bond	c) A polar covalent bond	d) No bond
258. Ionization potential is lov	vest for:		a) 110 2011a
a) Halogens	h) Inert gases	c) Alkaline earth metals	d) Alkali metals
259. The orbitals of same ener	gy level providing the most	t efficient overlapping are:	
a) $sn^3 - sn^3$	b) <i>sn</i> - <i>sn</i>	c) $sn^2 - sn^2$	d) All of these
260. The covalent compound H	HCl has the polar character	because:	
a) The electronegativity of	of hydrogen is greater than	that of chlorine	
b) The electronegativity (of hydrogen is equal to that	that of chlorine	
c) The electronegativity (of chlorine is greater than t	hat of hydrogen	
d) Hydrogen and chlorine	are gases	nat of ny al ogen	
261 Identify the non-nolar mo	plecule in the set of compou	inds given	
HCl HF H _a HBr	secure in the set of compot	inus given	
a) H ₂	h) HCl	c) HF HBr	d) HBr
262. Which one of the followin	og compounds has sn ² hybr	ridisation?	wj 1101
a) (0,	h) SO2	$c) N_{c}O$	d) (0
263 The increasing order of th	he ionic radii of the given is	coelectronic species is:	uj 00
abor the mercasing of act of th	he forme round of the given is	server onne species is.	

c) K ⁺ , S ^{2–} , Ca ²⁺ , Cl [–]	d) Cl ⁻ , Ca ²⁺ , K ⁺ , S ²⁻
с) H ⁺	d) ዘል
ond?	uj ne ₂
c) HCl	d) H ₂ S
-)	
c) $B_{ro}H_{ro}^{+}$	d) $B_{10}H_{2}^{2+}$
) respectively. Therefore, ic	onic character in $A - R$ hond
respectively. Therefore, it	
c) 53.3%	d) 72.23%
-	
nanb) Energy of the system	does not change
d) Energy decreases	
Fe(CN) ₆ dissociates is:	
c) 6	d) 2
es is	. · ·
c) XeF_2 , CO_2	d) PF_5 , IF_7
	5 37 1
c) CCl₄	d) HCl
	2
c) Bel ₂	d) ClO_2
SXY .	
\mathbf{V}'	
<i>V</i>	
ther than 3?	
c) NO ⁺	d) 0 ₂ ⁺
c) XeO_2F_2	d) XeF ₄
ing same bond order CN ⁻ , O	[−] ₂ , NO ⁺ , CN ⁺
c) CN^{-} and NO^{+}	d) CN^- and CN^+
ectively, are	
c) 104.5°, 1.84 D	d) 102.5°, 1.56 D
following species is:	
c) $Cl_2 0 < ClO_2^- < ClO_2$	d) $ClO_2^- < Cl_2O < ClO_2$
c) C ₂ H ₆	d) HCl
ber of:	
er b) Due to dipole – dipole	e interactions
d) Strong London Forces	S
oies of the elements B, P, S ar	nd F (lower first) is:
	(
c) B < P < S < F	d) $B < S < P < F$
	c) $K^+, S^{2-}, Ca^{2+}, Cl^-$ c) H_2^+ ond? c) HCl c) $B_{12}H_{12}^+$ respectively. Therefore, ic c) 53.3% hanb) Energy of the system d) Energy decreases Fe(CN) ₆ dissociates is: c) 6 es is c) XeF ₂ , CO ₂ c) CCl ₄ c) Bel ₂ her than 3? c) NO ⁺ c) XeO ₂ F ₂ ng same bond order CN ⁻ , O c) CN ⁻ and NO ⁺ ctively, are c) 104.5°, 1.84 D following species is: c) Cl ₂ O < ClO ₂ ⁻ < ClO ₂ c) C ₂ H ₆ ber of: er b) Due to dipole – dipole

likely to be:			
a) Na	b) Si	c) F	d) Ca
284. Which of the follow	wing is paramagnetic?		
a) B ₂	b) C ₂	c) N ₂	d) F ₂
285. Ionization potenti	al of Na would be numericall	ly the same as:	
a) Electron affinity	y of Na ⁺		
b) Electronegativi	ty of Na ⁺		
c) Electron affinity	y of He		
d) Ionization pote	ntial of Mg		
286. Which one of the f	ollowing conversions involv	e change in both hybridi	sation and shape?
a) $CH_4 \rightarrow C_2H_6$	b) $NH_3 \rightarrow NH_4^+$	c) $BF_3 \rightarrow BF_4^-$	d) $H_2 O \rightarrow H_3 O^+$
287. According to MO t	heory,		
a) 0^+_2 is paramagn	etic and bond order greater	than 0 ₂	
b) 0^+_2 is paramagn	etic and bond order less tha	n 0 ₂	
c) 0_2^+ is diamagne	tic and bond order is less that	an O ₂	
d) O_2^+ is diamagne	tic and bond order is more t	han O ₂	
288. If the molecule of	HCl were totally polar, the	expected value of dipol	e moment is 6.12 D (dbye), but the
experimental valu	e of dipole moment was 1.03	3 D. Calculate the percen	tage ionic character
a) 17	b) 83	c) 50	d) Zero
289. The order of first e	electron affinity of O, S and S	e is:	
a) 0 > S > Se	b) S > 0 > Se	c) Se > 0 > S	d) Se > S > 0
290. The nodal plane in	1 the π -bond of ethane is loca	ated in:	
a) The molecular ر	plane		
b) A plane parallel	to the molecular plane		
c) A plane perpen	dicular to the molecular plar	ne which bisects the carb	oon-carbon σ -bond at right angle
d) A plane perpen	dicular to the molecular plar	ne which contains the car	rbon-carbon σ-bond
291. The correct electro	onegativity order is:	`	
a) C, N, Si, P	b) N, Si, C, P	c) Si, P, C, N	d) P, Si, N, C
292. The pair of species	s having identical shapes for	molecules of both specie	es is
a) CF ₄ , SF ₄	b) XeF ₂ , CO ₂	c) BF ₃ , PCl ₃	d) PF ₅ , IF ₅
293. Amongst the follow	wing, the molecule that is lin	ear is	
a) SO ₂	b) CO_2	c) ClO ₂	d) NO ₂
294. Using MO theory p	oredict which of the followin	g species has the shortes	st bond length?
a) 0 ₂ ²⁺	b) 0 ⁺ ₂	c) 0 ₂	d) O_2^{2-}
295. The hybridisation	of carbon atom in benzene i	s?	
a) <i>sp</i>	b) <i>sp</i> ²	c) <i>sp</i> ³	d) dsp^2
296. Bond angle betwe	en two hybrid orbitals is 105	5°. Hybrid character orbi	tal is:
a) Between 20-21	% b) Between 19-20%	c) Between 21-2	2% d) Between 22-23%
297. KF combines with	HF to form KHF ₂ . The comp	ound contains the specie	es:
a) K^+ , F^- and H^+	b) K ⁺ , F [–] and HF	c) K^+ and $[HF_2]^-$	d) [KHF] ⁺ and F^-
298. o-hydroxy benzalo	lehyde, although contains er	olic group but does not	give test of group with FeCl ₃
because:			
a) It is steam volat	tile		
b) Of intermolecul	ar H-bonding		
c) Of intramolecul	ar H-bonding		
d) All of the above	1		
299. Iron is tougher tha	an sodium because:		
a) Iron atom is sm	aller		
b) Iron atoms are	more closely packed		
c) Metallic bonds	are stronger in iron		

d) None of the above	
300. Correct order of bond angles in NH ₃ , PCl ₃ a	nd BCl ₃ is
a) $PCl_3 > NH_3 > BCl_3$	b) $NH_3 > BCl_3 > PCl_3$
c) $NH_3 > PCl_3 > BCl_3$	d) $BCl_3 > NH_3 > PCl_3$
301. The number of π - bonds present in propyr	ne is
a) 4 b) 1	c) 3 d) 2
302. A bond with maximum covalent character l	between non-metallic elements is formed:
a) Between identical atoms	
b) Between chemically similar atoms	\frown
c) Between atoms of widely different electronic	ro-negativities
d) Between atoms of the same size	
303. The compound in which underlined carbon	uses only its sp^3 hybrid orbitals for bond formation is
a) CH_2COOH b) CH_2CONH_2	c) CH_2CH_2OH d) $CH_2CH = CH_2$
304. Consider the following compounds	
(i) chloroethene (ii) henzene	
(iii) 1. 3-butadiene (iv) 1.3.5 – hexatrier	ne
All the carbon atoms are sn^2 hybridised in	
a) (i), (iii), (iv) only b) (i), (ii) only	c) (ii), (ii), (iv) only d) (i), (ii), (iii) and (iv)
305. When jonic compounds get dissolved in wa	ater:
a) They involve heat changes	
b) Inter-ionic attraction is reduced	
c) Ions show dipole-ion attraction with wa	ter molecules
d) All are correct	
306. Pick the odd one out (The one having zero	dipole moment):
a) NH_3 b) H_2O	c) BCl ₃ d) SO ₂
307. Which of the following shows minimum bo	and angle?
a) H_2O b) H_2Se	c) H_2S d) H_2Te
308. Among the following isostructural compou	nds, identify the compound which has the highest lattice energy
a) LiF b) LiCl	c) NaCl d) MgO
309. Which species is diamagnetic in nature?	
a) He_2^+ b) H_2	c) H_2^+ d) H_2^-
310. Which of the following compounds would h	nave the highest boiling point?
a) CH ₃ CH ₂ CH ₂ CH ₃ b) CH ₃ NH ₂	c) CH_3OH d) CH_2F_2
311. Hybridisation of central atom in NF_3 is	
a) <i>sp</i> ³ b) <i>sp</i>	c) sp^2 d) dsp^2
312. Which of the compounds has highest boilin	ig point?
a) Acetone b) Diethyl ether	c) Methanol d) Ethanol
313. The number and type of bonds between tw	vo carbon atoms in CaC ₂ are:
a) One sigma (σ) and one pi (π)-bond	
b) One sigma (σ) and two pi (π)-bonds	
c) One sigma (σ) and one and a half pi (π)-	bond
d) One sigma (σ) bond	
314. Which of the following hydrogen bonds are	e strongest in vapour phase?
a) HFHF b) HFHCl	c) HCLHCl d) HFHi
315. The bond angle and hybridization in ether	(CH_3OCH_3) is:
a) 106° 51′ , <i>sp</i> ³ b) 104° 31′ , <i>sp</i> ³	c) 110° , sp^3 d) None of these
316. Which has the highest bond energy?	
a) Hydrogen bond b) Triple bond	c) Double bond d) Single bond
317. Among the following compounds the one the	hat is polar and has central atom with sp^2 -hybridisation is:
a) H_2CO_3 b) SiF_4	c) BF_3 d) $HClO_2$

318. The incorrect statement among the following is:		
a) The first ionization potential of Al is less than the	e first ionization potential o	of Mg
b) The second ionization potential of Mg is greater	than the second ionization	potential of Na
c) The first ionization potential of Na is less than th	e first ionization potential	of Mg
d) The third ionization potential of Mg is greater the	an the third ionization pote	ential of Al
319. The bond angle is smallest in		
a) H_2O b) H_2S	c) BeCl ₂	d) N ₂ O
320. The number of electrons in the valence shell of sulp	hur in SF ₆ is	
a) 12 b) 10	c) 8	d) 11
321. Acetic acid exists as dimer in benzene due to:		
a) Condensation reaction		
b) Hydrogen bonding		
c) Presence of carboxyl group		
d) Presence of hydrogen atom at α -carbon		
322. The correct order of hybridization of the central ato	om in the following species	NH_3 , $[PtCl_4]^{2-}$, PCl_5 and
BCl ₃ is:		X
a) dsp^2 , dsp^3 , sp^2 , sp^3 b) sp^3 , dsp^2 , dsp^3 , sp^2	c) dsp ² ,sp ² ,sp ³ ,dsp ³	d) dsp^2 , sp^3 , sp^2 , dsp^3
323. Chemical bond formation takes place when?)
a) Energy is absorbed		
b) Forces of attraction overcome forces of repulsion	1	
c) Forces of repulsion overcome forces of attraction	1	
d) Forces of attraction are equal to forces of repulsi	on	
324. NH_3 has higher boiling point than expected, becaus	e:	
a) With water it forms NH ₄ OH		
b) It has strong intermolecular hydrogen bonds	X	
c) It has strong intermolecular covalent bonds		
d) Its density decreases in freezing	*	
325. Which of the following represents the Lewis structu	re of N ₂ molecule?	
	$\mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X}$	
a) $\times N = N_{\times}^{\circ}$ b) $\times N = N_{\times}^{\circ}$	c) $\times N \times \frac{N \times N}{\times \times}$	d) $\stackrel{\sim}{\times} \underset{\times}{N} = \underset{\times}{N} \underset{\times}{N} \underset{\times}{N}$
226 Which of the following has a hand order of 1.752		
a) Clo	a) NO-	d) CO^{2}
$a_1 \cup \cup_3 \cup \cup_4$	$CJ NO_3$	$0 CO_{3}$
327. Higher is the bond order, greater is:		
a) Bond dissociation energy		
b) Covalent character		
c) Bond length		
a) Paramagneusm		
328. Which has the highest ionisation potential?		-1) F
aj Na Dj Mg	CJ L	a) F
329. Strongest bond is in:		
a) NaCl b) USU	c) Both (a) and (b)	d) None of these
330. Which of the following is not correct with respect to 2^{2}	bond length of the species	S?
a) $C_2 > C_2^2$ b) $B_2^+ > B_2$	c) $Li_2^+ > Li_2$	d) $0_2 > 0_2$
331. The bond order in O_2^{2-} ion is		
a) 3 b) 2	c) 3/2	d) 1
332. Which is likely to have the highest melting point?		
a) He b) CsF	c) NH ₃	d) CHCl ₃
333. Which of the following are not correct?		

a) Lone pair of electrons present on central atom can give rise to dipole moment

b) Dipole moment is vector quantity

	c) CO ₂ molecule has dipol	le moment		
	d) Difference in electrone	gativities of combining ato	ms can lead to dipole mom	ent
334	. In the formation of N_2^+ fro	om N ₂ , the electron is lost fi	rom:	
	a) a σ-orbital	b) a π-orbital	c) a σ^* -orbital	d) a π^* -orbital
335	. Bond angle of 109°28′ is f	found in		
		ЫU О	a) ⊕	d) ⊕
	aj nn ₃	DJ П ₂ О	C) C H ₅	$\rm J_{NH_4}$
336	. The half of the difference	between the number of ele	ctrons in bonding molecula	ar orbitals and antibonding
	molecular orbitals is know	wn as:		
	a) Bond order	b) Proton order	c) Molecular order	d) Electron order
337	. Which of the following set	t contains species having sa	ame angle around the centr	al atom?
	a) SF ₄ , CH ₄ , NH ₃	b) NF ₃ , BCl ₃ , NH ₃	c) BF ₃ , NF ₃ , AlCl ₃	d) BF ₃ , BCl ₃ , BBr ₃
338	8. At ordinary temperature a	and pressure, among halog	ens, the chlorine is a gas, b	romine is a liquid and
	iodine is a solid. This is be	ecause:		
	a) The specific heat is in t	he order $Cl_2 > Br_2 > I_2$		
	b) Intermolecular forces a	among molecules of chlorin	e are the weakest and thos	e in iodine are the
	strongest	5	Ć.	
	c) The order of density is	$I_2 > Br_2 > Cl_2$		
	d) The order of stability is	$s Cl_2 > Br_2 > I_2$		
339	. Which of the following ha	s lowest bond angle?		
	a) BeF ₂	b) H ₂ O	c) NH ₃	d) CH₄
340	. Which of the following ha	s shortest carbon-carbon b	ond length?	
	a) C ₆ H ₆	b) C_2H_6	c) $C_2 H_4$	d) C_2H_2
341	. Which one of the followin	g constitutes a group of the	e isoelectronic species?	, , , , , , , , , , , , , , , , , , , ,
	a) C_{2}^{2-} , O_{2}^{-} , CO , NO	b) NO^+ , C_2^{2-} , CN^- , N_2	c) CN^{-} , N_2 , O_2^{2-} , CO_2^{2-}	d) N_2 , O_2^- , NO^+ , CO
342	The sn^3d^2 hybridisation of	of central atom of a molecu	le would lead to	-) 2, -2, -,
012	a) Square planar geometr	v		
	b) Tetrahedral geometry			
	c) Trigonal bipyramidal g	eometry		
	d) Octahedral geometry			
343	Methanol and ethanol are	miscible in water due to:		
010	a) Covalent character			
	h) Hydrogen honding cha	racter		
	c) Oxygen bonding charac	cter		
	d) None of the above			
344	The shape of CIF ₂ is			
511	a) Distorted T- shape	h) Pyramidal	c) Tetrahedral	d) Trigonal planar
345	Which are true statement	s among the following?	ej retrancurar	
010	(1) PH- and BiCl- does no	nt exist		
	(1) $n\pi - d\pi$ honds are nr	esent in SO_{a}		
	(3) Electrons travel with	speed of light		
	(4) SeF, and CH, has sam	le shane		
	(1) Set $_4$ and err $_4$ has same (5) L^+ has bent geometry	ie snape		
~	(3) 13 mas beint geometry	h) 1 2 5	c) 1 3 5	d) 1 2 4
346	a) 1, 5 The actual geometry of N(O^{-} is	CJ 1, 3, 5	u) 1, 2, 4
540	a) Dianar	U_2 15 b) Lincor	c) V chang	d) Totrahodral
217	aj rialiai Which has the lowest said	of Lilleal	cj v-snape	ujitualituidi
547	a) LiF	b) NoF	റിവ	ብ) ር _ደ Ε
240	aj LII [.] The operational elements	UJ Mal	bolowic	uj USI [.]
548	No ⁺ (a) \pm Cl ⁻ (a) \rightarrow NoCl	ipanying the process given	UC10W 15,	
	ind $(g) + Ci (g) \rightarrow NaCl$	(s).	a) Electron officity	d) Lattias anorm
	a) hyuration energy	b) ionization energy	c) Electron aminity	u) Lattice energy

349. Which of the follow	ing has covalent bond?		
a) Na ₂ S	b) AlCl ₃	c) NaH	d) MgCl ₂
350. The correct order in	which the $0 - 0$ bond length	n increases in the following	is
a) $0_2 < 0_3 < H_2 0_2$	b) $H_2O_2 < O_3 < O_2$	c) $0_3 < 0_2 < H_2 0_2$	d) $0_2 < H_2 0_2 < 0_3$
351. N_2 is less reactive the	nan CN [–] due to		
a) Difference in spin	n quantum number	b) Presence of more el	ectrons in orbitals
c) Absence of dipole	e moment	d) None of the above	
352. According to molect	ular orbital theory for O_2^+ :		
a) Bond order is les	s than O_2 and O_2^+ is paramage	netic	· · ·
b) Bond order is mo	ore than O_2 and O_2^+ is paramaged	gnetic	
c) Bond order is les	s than O_2 and O_2^+ is diamagne	tic	
d) Bond order is mo	ore than O_2 and O_2^+ is diamage	netic	
353. As compared to cov	alent compounds, electrovale	ent compounds generally ha	ive:
a) Low melting poir	nts and low boiling points		
b) High melting poi	nts and high boiling points		
c) Low melting poin	nts and high boiling points		
d) High melting poi	nts and low boiling points	. (
354. Which is present in	peroxides?		5
a) 0 ₂	b) 0 ^{2–}	c) 0_2^{2-}	d) 0_2^-
355. Two hybrid orbitals	s have a bond angle of 120°. T	he percentage ofs character	r in the hybrid orbital is nearly
a) 25%	b) 33%	c) 50%	d) 66%
356. Which molecule is T	S-shaped?		
a) BeF ₂	b) BCl ₃	c) NH ₃	d) ClF ₃
357. Which of the follow	ing is paramagnetic?		
a) 0 ₂	b) CN ⁻	c) CO	d) NO ⁺
358. Dipole moment is h	ighest for:		
a) CHCl ₃	b) CH ₄	c) CHF ₃	d) CCl ₄
359. Which will not cond	luct electricity?		
a) Aqueous KOH so	lution b) Fused NaCl	c) Graphite	d) KCl in solid state
360. The ionization pote	ntial order for which set is co	rrect?	
a) $Li > K > Cs$	b) $B > Li > K$	c) $Cs > Li > B$	d) $Cs < Li < K$
361. The bond that deter	mines the secondary structur	re of a protein is:	
a) Coordinate bond	b) Covalent bond	c) Hydrogen bond	d) lonic bond
362. Molecular orbital th	leory was developed mainly b)y	
a) Pauling	b) Mulliken	c) Inomson	d) Pauling and Slater
363. Which species has I	b) CU	-) NII+	ун о
a) UU_4	$DJ LH_4$	C) $N\Pi_4$	$d J H_2 O$
a) SE	b) Sie	a) VoE	d) PE-
a) $5F_4$ 265 Super extet molecul	UJ SIF ₄	cj xer ₄	uj dr ₄
	b) DCl	c) NH	d) None of these
266 The number of upp	DJFCI3	cj MII3 Natic diatomic moloculo of a	a) None of these
	an eu electrons in a paramagn	ieur ulatolilit illolecule ol a	in element with atomic number
1013.	b) 1	c) 2	d) 3
aj 4 367 Which of the follow	b) I ing statement is not correct?	() 2	u) 5
a) Hybridisation is	the mixing of atomic orbitals	nrior to their combining int	o molecular orbitals
h) sn ² hybrid orbita	ls are formed from two n-ato	mic orbitals and one s-orbit	tal
c) $d^2 \operatorname{cn}^3$ hydride or	bitals are directed towards the	he corners of a regular octa	hedron
d) den ³ hubrid orbit	als are all at 90° to one anoth	er	

368. Which statement is correct?

	a) Pi-bond always exists	with sigma-bond		
	b) Pi-bond can exist inde	ependently		
	c) Sigma-bond is weaker	than pi-bond		
	d) Pi-bond is less reactiv	e than sigma-bond		
369	. Which of the following p	air has same structure?		
	a) PCl ₅ and SF ₆	b) SO ₂ and NH ₃	c) PH_3 and BCl_3	d) NH ⁺ ₄ and SO ²⁻ ₄
370	. Which of the following h	as dipole moment?	5 5 5	J + +
0.0	a) CO_2	b) <i>p</i> -dichlorobenzene	c) NH ₂	d) CH
371	Which one of the followi	ng is highest melting halide	7	
071	a) Ag(]	h) AgBr	c) AgF	d) Agi
372	The hybridisation state of	of central atom in PCL is	c) ngi	
072	a) cn^3d	b) sn^3d^2	c) sm ³	d) $d^2 sn^3$
373	The correct order of incr	easing hand angles in the fo	ollowing triatomic species i	aju sp
575	$_{2}$ NO ⁻ $<$ NO $<$ NO ⁺	b) $NO^+ \sim NO \sim NO^-$	c) $NO^+ < NO^- < NO^-$	d = 0 = 0 = 0 = 0
271	K^+ $C^ C^{2+}$ S^{2-} ions or	$0 \text{ MO}_2 < \text{MO}_2 < \text{MO}_2$	$c_1 N c_2 < N c_2 < N c_2$	$u_1 NO_2 < NO_2 < NO_2$
574	(X, U,	2+	sing of der of them size is.	\bigcirc
	$d_{1} = 0$	2-	^	
	D = C = C = C = C = C = C = C = C = C =	- 2–		
	c) $K' > CI > Ca^{2+} > S^{2+}$	- -		/
	d) $CI > S^2 > Ca^{2+} > K$			
375	As the s-character of hyb	oridization orbitals increase	s, the bond angle:	
	a) Increases	b) Decreases	c) Does not change	d) Becomes zero
376	. AlCl ₃ is covalent while A	IF_3 is ionic. This fact can be	justified on the basis of	
	a) Valence bond theory	b) Crystal structure	c) Lattice energy	d) Fajan rule
377	. Which one of the followi	ng is a correct set with resp	ect to molecule, hybridisati	on and shape?
	a) BeCl ₂ , sp^2 , linear		b) BeCl ₂ , sp^2 , triangular p	olanar
	c) BCl_3 , sp^2 , triangular p	lanar	d) BCl_3 , sp^3 , tetrahedral	
378	. In BrF ₃ molecule, the lon	ie pairs occupy equatorial p	ositions to minimize	
	a) Lone pair – bond pair	repulsion only		
	b) Bond pair – bond pair	repulsion only		
	c) Lone pair – lone pair r	repulsion and lone pair – bo	nd pair repulsion	
	d) Lone pair – lone pair r	repulsion only		
379	. The correct order of dec	reasing polarity is		
	a) $HF > SO_2 > H_2O > N_2$	H ₃	b) $HF > H_2 O > SO_2 > NH$	ł ₃
	c) $HF > NH_3 > SO_2 > H$	2 ⁰	d) $H_2 0 > NH_3 > SO_2 > H_3$	IF
380	. The process requiring th	e absorption of energy is:		
	a) F – F [–]	b) $H \rightarrow H^-$	c) $Cl \rightarrow Cl^-$	d) $0 \rightarrow 0^{2-}$
381	In 0_2^- , 0_2 and 0_2^{2-} molect	ular species, the total numb	er of antibonding electrons	respectively are
	a) 7, 6, 8	b) 1, 0, 2	c) 6, 6, 6	d) 8, 6, 8
382	sp^3 hybridisation is foun	ıd in		
	a) CO_3^{2-}	b) BF ₃	c) NO ₃	d) NH ₃
383	Among the following me	tals interatomic forces are p	probably weakest in:	
\mathbf{C}	a) Cu	b) Ag	c) Zn	d) Hg
384	Which of the following p	henomenon will occur whe	n two atoms of an element	with same spin of electron
~	in orbitals approach each	h other?		
	a) Orbitals will overlap			
	b) Orbitals will not overl	ар		
	c) Bonding will take plac	ce		
	d) A diatomic molecule v	vill be formed		
385	. If the bond has zero per	cent ionic character. the boi	nd is:	
	a) Pure covalent	b) Partial covalent	c) Partial ionic	d) Coordinate covalent

386. Which bond angle θ wou	ld result in the maximum	dipole moment for the tri	iatomic molecule <i>yxy</i> ?
a) θ = 90°	b) θ = 120°	c) θ = 150°	d) $\theta = 180^{\circ}$
387. The species having bond	order different from that	t in CO is	
a) NO ⁻	b) NO ⁺	c) CN ⁻	d) N_2
388. The species having octah	edral shape is:	,	, <u> </u>
a) SF ₆	b) BF ₄	c) PClr	d) BO_{2}^{3-}
389 The following compound	s have been arranged in (order of their increasing th	hermal stabilities. Identify the
correct order	is have been arranged in t	order of their meredshig th	the man stabilities. Renting the
	$M_{\sigma}CO_{+}(II)$		\frown
$K_2 CO_3 (I)$	$B_{0}(0)$ (W)		
$CaCO_3(III)$	b) $W \leftarrow U \leftarrow U \leftarrow U$		d $\Pi \subset \Pi \subset \Pi \subset \Pi$
a) $1 < 11 < 111 < 1v$	ill chow loast dipolo mon	$C_{J} = V \times H \times I \times H$	
a) Ethana	h) Ethor	a) Ethanol	d) Watan
a) Eulaile	DJ Etilei hand an angw?	c) Ethanol	uj water
391. Which has the minimum	bolid energy?	-) I I	
a) H—Br		C) I—I	
392. The polarising ability of	which one of the followin	g is highest?	
a) Small highly positive i	on		
b) Large positive ion			
c) Small highly negative	ion		
d) Large negative ion			
393. Which is expected to sho	w paramagnetism?		
a) ClO ₂	b) SO_2	c) CO ₂	d) SiO ₂
394. Highest covalent charact	er is found in which of the	e following?	
a) CaF ₂	b) CaCl ₂	c) CaI ₂	d) CaBr ₂
395. The molecule which has	zero moment is		
a) CH ₃ Cl	b) NF ₃	c) BF ₃	d) ClO ₂
396. Hydrogen bond is strong	est in	V	
a) S——HO	b) 0	С) ғ——нғ	d) ON
397. The only molecule having	g dipole moment is		
a) 2,2-dimethylpropane			
b) <i>trans</i> -2-pentene			
c) <i>trans</i> -3-hexene	$\langle \mathbf{X} \mathbf{X} \rangle$		
d) 2,2,3,3-tetramethylbu	tane		
398. Two lone pairs of electro	ns and two bond pairs ar	e present in:	
a) NH ₂	b) BF ₂	c) CO_2^{2-}	d) NH2
399. The lattice enthalpy and	hydration enthalpy of for	ir compounds are given be	low
Compound Lattice	Hydration		
enthalp	v enthalpy		
(in kJ mol	$(in k mol^{-1})$		
P +780	-920		
Q +1012	-812		
R +828	-878		
<u>S</u> +632	-600		
The pair of compounds v	vhich is soluble in water i	S	
a) Pand Q	b) <i>Q</i> and <i>R</i>	c) R and S	d) Pand R
400. The increase in bond ord	ler results in:		
a) Decrease in bond leng	th and increase in bond e	energy	
b) Decrease in bond leng	th and bond energy		
c) Increase in bond lengt	h and bond energy		
d) None of the above			
401. The correct stability orde	er of the following resona	ince structure is	

$H_2C = N = \bar{N} - \bar{N} = H_2C - N = \bar{N}$		
$H_2 U \longrightarrow N \longrightarrow N \longrightarrow N$		
a) $(1) > (11) > (1V) > (111)$	b) (1)> (11) > (11) >	> (IV)
c) (II)> (I) > (III) > (IV)	d) (III)> (I) > (IV)	> (II)
402. Which is not characteristic of π -bond?	,	
a) π -bond is formed when a sigma bo	nd already formed	
b) π -bond is formed from hybrid orbit	als	
c) π -bond may be formed by the over	apping of <i>p</i> -orbitals	× , *
d) π -bond results from lateral overlap	of atomic orbitals	
403. A molecule in which sp^2 -hybrid orbita	als are used by the central atom in f	orming covalent bond is:
a) He ₂ b) SO ₂	c) PCl ₅	d) N ₂
404. Which species has the highest bond or	:der?	\sim
a) 0_2 b) 0_2^{2-}	c) N ₂	d) Both O_2 and O_2^{2-}
405. Molecular shapes of SF_4 , CF_4 , XeF_4 are		
a) The same with 2, 0 and 1 lone pair	of electron respectively	
b) The same with 1, 1 and 1 lone pair	of electrons respectively	Y
c) Different with 0, 1 and 2 lone pair o	of electrons respectively	
d) Different with 1, 0 and 2 lone pair o	of electrons respectively	
406. The correct sequence of hybridisation	of methane, ethene and acetylene i	is
a) sp, sp^2, sp^3 b) sp^2, sp^3 ,	sp c) sp^3 , sp^2 , sp	d) sp^3 , sp , sp^2
407. The nature of the bond in diamond is		
a) Ionic b) Covalent	c) Metallic	d) Coordinate covalent
408. The set representing the correct order	of first ionization potential is:	
a) $K > Na > Li$ b) $Be > Mg$	c > Ca $c > N$	d) Ge > Si > C
409. Amongst the following, the molecule t	hat is linear is	
a) SO_2 b) BeH_2	c) ClO ₂	d) NO_2
410. Which of the following species does not 2π	ot exist under normal conditions?	
a) Be^{2} b) Be_{2}	$CJ B_2$	a) Ll_2
411. How many σ and π – bonds are preserved as $2\pi + 2\pi$	it in toluene? $2 - 15$	$d) \left(- + 2 - \right)$
a) $311 + 80$ b) $311 + 100$	5 C 3 150	u) 611 + 30
2	ා ආ 0	4) (0
$413 CO_2$ $D_1 H_2 O$	$c_{j} \sigma_{2}$	u) CO
(4) $HgCl_{2}$ (B) NO_{2} (C) $SnCl_{2}$ (D) $C_{2}H$	1_	
a) A and C b) B and D	c) $A and D$	d) Cand D
414. Concept of bond order in the molecula	ar orbital theory depends on the nu	mber of electrons in the bonding
and antibonding orbitals. The bond or	der:	
a) Can have a $-$ ve value		
b) Has always an integral value		
\mathcal{O}_{c}) Is a non-zero quantity		
d) Can assume any +ve value, includir	ig zero	
415. The number of σ and π -bonds in pent-	4-en-1-yne are respectively:	
a) 3, 10 b) 9, 4	c) 4, 9	d) 10, 3
416. The Cl—C—Cl angle in 1, 1, 2, 2-tetrac	hloroethene and tetrachlorometha	ne respectively will be about:
a) 109.5° and 900° b) 120° and	d 109.5° c) 90° and 109.5°	d) 109.5° and 120°
417. Which set has strongest tendency to f	orm anions?	
a) Ga, In, Te b) Na, Mg, A	Al c) N, O, F	d) V, Cr, Mn

418. From elementary molecular orbital theory we can	give the electronic configu	ration of the singly positive
nitrogen molecular ion N_2^+ as		
a) $l\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\pi 2p^4$, $\sigma 2p^1$	b) $\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, σ^*	$2s^2$, $\sigma 2p^2$, $\pi 2p^3$
c) $\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p^3, \pi 2p^2$	d) $\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, σ^*	$2s^2, \sigma 2p^2, \pi 2p^4$
419. NH_3 has much higher boiling point than PH_3 becau	use	
a) NH ₃ has larger molecular weight		
b) NH ₃ undergoes umbrella inversion		
c) NH ₃ forms hydrogen bond		
d) $\rm NH_3$ contains ionic bonds whereas $\rm PH_3$ contain	s covalent bonds	
420. In a crystal, the atoms are located at the positions	of:	
a) Maximum potential energy		
b) Minimum potential energy		
c) Zero potential energy		
d) Infinite potential energy		
421. Which substance has the greatest ionic character?		
a) Cl_2O b) NCl_3	c) PbCl ₂	d) BaCl ₂
422. The conductivity of the metal decreases with incre	eases in temperature becau	se
a) The kinetic energy of the electron increases		S
b) The movement of electrons becomes haphazard	d	
c) The kernels start vibrating		
d) The metal becomes hot and starts emitting radi	ations	
423. Which of the following when dissolved in water fo	orms a solution, <i>i.e.</i> , non-cor	iducting?
a) Chile salt petre	b) Potash alum	
c) Green vitriol	d) Ethyl alcohol	
424. Which bond is more polar?		
a) Cl—Cl b) N—F	<i>c</i>) C—F	d) 0—F
425. The pairs of bases in DNA are held together by:		
a) Hydrogen bonds b) Ionic bonds	c) Phosphate groups	d) Deoxyribose groups
426. Which of the following has highest bond angle?		
a) H_2O b) H_2S	c) NH ₃	d) PH ₃
427. The compound in which carbon atom uses only <i>sp</i>	o ³ - hybrid orbitals for bond	formation is
a) HCOOH b) NH_2CONH_2	c) (CH ₃) ₃ COH	d) CH ₃ CHO
428. For the type of interactions; (1) Covalent bond, (1)) van der Waals' forces, (III) Hydrogen bonding, (IV)
Dipole-dipole interaction, which represents the co	orrect order of increasing st	ability?
a) (I) < (III) < (II) < (IV)		
b) (II) $<$ (III) $<$ (IV) $<$ (I)		
c) (II) $<$ (IV) $<$ (III) $<$ (I)		
d) $(IV) < (II) < (III) < (I)$		
429. If the ionization potential for hydrogen atom is 13	.6 eV, then the ionization po	otential for He ⁺ ion should
a) V2.2 eV b) 54.4 eV	c) 6.8 eV	d) 13.6 eV
430. The hydrogen bonding is strongest in:		
a) U—H S D) S—H U	сј F—Н F	d) F—H U
431. The correct increasing order of polarising power 1	S:	
a) $Ca^{2+} < Mg^{2+} < Be^{2+} < K^{+}$		
DJ Mg ²⁺ < Be^{2+} < K^+ < La^{2+}		
CJ $BE^{-} < K^{+} < La^{+} < Mg^{+}$		
a) $K' < La^{+} < Mg^{+} < Be^{++}$		
432. Acetate ion contains:		
a) One C, O single bond and one C, O double bond		

b) Two C, O single bonds		
c) Two C, O double bonds		
d) None of the above		
433. Which one is paramagnetic and has the bond orde	er half (0.5)?	
a) F_2 b) N_2	c) 0 ₂	d) H ₂ ⁺
434. Which one is correct?		
a) Dinitrogen is paramagnetic		
b) Dihydrogen is paramagnetic		
c) Dioxygen is paramagnetic		· · ·
d) Dioxygen is diamagnetic		$\langle \nabla \rangle$
435. IP is influenced by:		
a) Size of atom		
b) Charge on nucleus		
c) Electrons present in inner shells		
d) All of the above		
436. The hybridization of atomic orbitals of nitrogen in	NO_2^+ , NO_3^- and NH_4^+ are:	X
a) sp , sp^3 and sp^2 respectively	C	· · · · · · · · · · · · · · · · · · ·
b) sp , sp^2 and sp^3 respectively		S
c) sp^2 , sp and sp^3 respectively		
d) sp^2 , sp^3 and sp respectively		
437. The bond between carbon atoms (1) and (2) in co	mpound $N \equiv C - CH = CH$	2,
	(1) (2)	-
involves the hybrid orbitals;		
a) sp^2 , sp^3 b) sp , sp^2	c) sp, sp^3	d) <i>sp, sp</i>
438. Which of the following has lowest boiling point?		
a) NaCl b) CuCl	c) CuCl ₂	d) CsCl
439. When metals react with non-metals, the metal ato	ms tend to	
a) Share electrons b) Lose electrons	c) Gain electrons	d) None of the above
440. Which one has more tendency to form covalent co	ompounds?	
a) Ba b) Be	c) Mg	d) Ca
441. The order of melting point of ortho, para, meta-nit	trophenol is	
a) $o > m > p$ b) $p > m > o$	c) $m > p > o$	d) $p > o > m$
442. Number of non-bonding electron pair on Xe in XeI	F ₆ , XeF ₄ and XeF ₂ respectiv	ely will be
a) 6, 4, 2 b) 1, 2, 3	c) 3, 2, 1	d) 0, 3, 2
443. The hybridization of carbon in diamond, graphite	and acetylene is:	
a) sp^3 , sp^2 , sp b) sp^3 , sp , sp^2	c) <i>sp</i> ² , <i>sp</i> ³ , <i>sp</i>	d) $sp, sp^3 sp^2$
444. The molecule, ion which is pyramidal in shape is		
a) NO ₃ b) PCl_3	c) CO ₃ ²⁻	d) SO ₃
445. The number of lone pairs of Xe in XeF_2 , XeF_4 and X	KeF ₆ respectively are	
a) 3, 2, 1 b) 2, 4, 6	c) 1, 2, 3	d) 6, 4, 2
446. The electronic structure of the four elements A, B,	<i>C</i> and D are, $(A) = 1s^2$; (<i>E</i>	$(B) = 1s^2, 2s^22p^2; (C) =$
$1s^2, 2s^22p^5; (D) = 1s^2, 2s^22p^6.$		
The tendency to form electrovalent bond is maxim	num in:	
a) <i>A</i> b) <i>B</i>	c) <i>C</i>	d) <i>D</i>
447. C – C bond order in benzene is	-	-
a) 1 b) 2	c) Between 1 and 2	d) None of these
448. For the formation of covalent bond, the difference	in the value of electronega	tivities should be:
a) Equal to or less than 1.7	U	
b) More than 1.7		
c) 1.7 or more		

d) None of the above

a) Cl_2O, ICl_2^-

b) Cl_2^-, ClO_2

449. Which among the following elements has lowest value of ionisation energy?

a) Pb b) Sn c) Si d) C 450. In coordinate bond, the acceptor atoms must essentially contain in its valency shell an orbitals: a) With paired electron b) With single electron c) With no electron d) With three electrons 451. How many σ -and π -bonds are there in the molecule of tetracyanoethylene? $N \equiv C$ $N \equiv C$ a) Nine σ - and nine π b) Five σ - and nine π c) Nine σ - and seven π d) Five σ - and eight π 452. Paramagnetism of oxygen is explained on the basis of its electronic configuration of c) $\binom{*}{\sigma 2s}^{1} (\pi 2p_y)^{1}$ b) $(\pi^{*}_{2}p_{v})^{1}(\pi^{*}_{2}p_{z})^{1}$ a) $(\hat{\pi}_{2}p_{x})^{1}(\pi 2p_{y})^{1}$ 453. The compound possessing most strongly ionic nature is: d) CsC a) $SrCl_2$ b) BaCl₂ c) CaCl₂ 454. The complex ion which has no 'd' electrons in the central metal atom is: b) $[Co(NH_3)_6]^{3+}$ d) $[Cr(H_2O)_6]^{3+}$ a) [MnO₄]⁻ c) $[Fe(CN)_6]^{3-1}$ 455. Which of the following species is least stable? b) 0^+_2 d) 0_2^{2-} a) 0_2 c) 0_2^- 456. The dipole moment of HBr is 1.6×10^{-30} C-m and interatomic spacing is 1Å. The % ionic character of HBr is a) 7 b) 10 c) 15 d) 27 457. Which group of atoms have nearly same atomic radius? c) Fe, Co, Ni, Cu a) Na, K, Rb, Cs b) Li, Be, B, C d) F, Cl, Br, I 458. Bond polarity of diatomic molecule is because of a) Difference in electron affinity of the two atoms b) Difference in electronegativities of the two atoms c) Difference in ionisation potential d) All of the above 459. The hybridization of P in PO_4^{3-} is same as in: a) I in ICl₄ b) S in SO_3 c) N in $NO_3^$ d) S in SO_4^{2-} 460. AB is an ionic solid. The ionic radii of A^+ and B^+ are respectively r_c and r_a . Lattice energy of AB is proportional to d) $\frac{1}{(r_c + r_a)}$ a) $\frac{r_c}{r_a}$ c) $\frac{r_a}{r_c}$ b) $(r_c + r_a)$ 461. Which contains a coordinate and covalent bond? b) NH₄Cl d) H_20 a) BaCl₂ c) HCl 462. Covalent radius of Li is 123 pm. The crystal radius of Li will be: d) = $\frac{123}{2}$ pm a) > 123 pm b) < 123 pm c) + 123 pm 463. Which of the following does not contain coordinate bond? b) NH₄⁺ a) BH4 c) CO_3^{2-} d) H_30^+ 464. The bond order of C_2^+ is: b) 2 c) 3/2 d) 1/2 a) 1 465. With increasing bond order, stability of a bond b) Decreases c) Remains unaltered d) None of these a) Increases 466. Molecular orbitals theory was proposed by: a) Werner b) Kossel c) Moseley d) Mullikan 467. The isoelectronic pair is

c) IF_2^+, I_3^-

d) ClO_2^- , ClF_2^+

468. The compound 1,2-butadiene has		
a) sp, sp^2 and sp^3 hybridised carbon atoms	b) Only <i>sp</i> ² hybridised	carbon atoms
c) Only <i>sp</i> hybridised carbon atoms	d) Only sp and sp^2 hybridised carbon atoms	
469. The correct order of ionic radii is:		
a) $Fe > Fe^{2+} > Fe^{3+}$ b) $0^{2-} > 0^- > 0^+$	c) $I^- > I > I^+$	d) All of these
470. The shape of sulphate ion is	-	
a) Square planar b) Trigonal	c) Trigonal planar	d) Tetrahedral
471. Molecular shape of SF ₄ , CF ₄ and XeF ₄ are:	, , , ,	2
a) The same with 2, 0 and 1 lone pair of electrons r	espectively	
b) The same with 1, 1 and 1 lone pair of electrons r	espectively.	\sim
c) Different with 0, 1 and 2 lone pairs of electrons r	respectively.	
d) Different with 1, 0 and 2 lone pairs of electrons r	respectively.	
472. Which of the following is sp^3 hybridised?	1 9	
a) NH ₃ b) BH ₃	c) PCl ₅	d) AlCl ₃
473. Sodium chloride is soluble in water but not in benz	ene because	
$\Delta H_{ m hdydration}$	$\Delta H_{\rm hdydration}$	\mathbf{v}
a) $\leq \Lambda H_{1}$ and ΛH_{1} distance on a second	$h > \Lambda H_{lattice energy in}$	and $\Delta H_{\rm h}$ during the second se
$\sim \Lambda H_{\rm c}$	$\sim \Lambda H_{\rm c}$	ater and Enndydration
All	 ΔΠlattice energy in be 	enzene
$\Delta H_{\rm hdydration}$	$\Delta H_{\rm Hdydration}$	1 4 77
c) = $\Delta H_{\text{lattice energy in water}}$ and $\Delta H_{\text{hdydration}}$	d) $< \Delta H_{\text{lattice energy in was}}$	$_{ m ater}$ and $\Delta H_{ m Hdydration}$
$< \Delta H_{ m lattice}$ energy in benzene	$= \Delta H_{\text{lattice energy in be}}$	enzene
474. The pair likely to form the strongest hydrogen bon	ding:	
a) H_2O_2 and H_2O b) HCOOH and CH_3COOH	H c) CH_3COOH and CH_3CO	DO(d) SiH ₄ and SiCl ₄
475. The number of sigma and pi bonds in 1- butane 3-y	ne are:	
a) 5σ and 5π b) 6σ and 4π	c) 7σ and 3π	d) 8σ and 2π
476. Which is soluble in water?	Y	
a) AgF b) AgCl	c) AgBr	d) AgI
477. Which of the following compounds has the lowest r	nelting point?	
a) CaF_2 b) $CaCl_2$	c) CaBr ₂	d) CaI ₂
478. sp^3 hybridisation is not found in		
a) H_2O b) CH_4	c) BCl ₃	d) NH ₃
479. Amongst H_2O , H_2S , H_2Se and H_2Te , the one with hi	ghest boiling point is:	
a) H_2O because of hydrogen bonding		
b) H_2 Te because of higher molecular weight		
c) H_2S because of hydrogen bonding		
d) H ₂ Se because of lower molecular weight		
480. Which of the following is false?		
a) Methane molecule is tetrahedral in shape		
b) Nickel tetrachloride is square planar in shape		
c) P_2O_5 is like two pyramids joined at their apices		
d) Acetylene is non-linear		
481. The pair of elements which on combination are mo	st likely to form an ionic c	ompound is:
\checkmark a) Na and Ca b) K and O ₂	c) O_2 and Cl_2	d) Al and I_2
482. Among the following the maximum covalent charac	cter is shown by the compo	ound.
a) FeCl ₂ b) SnCl ₂	c) AlCl ₃	d) MgCl ₂
483. Dipole-dipole attractive forces are strongest betwe	en the molecules of:	
a) He b) CH_4	c) CO ₂	d) H ₂ O
484. The type of hybridization of sulphur atom present i	in SO_2 and SO_3 is respective	vely:
a) sp, sp^2 b) sp^2, sp^2	c) sp^2 , sp^3	d) sp, sp^3
485. The electrons used in bonding atoms:		

a) Belong to outermost shell

b) Belong to penultimate shell

c) Belong to outermost shell and sometimes penultimate shell

d) Belong to penultimate shell and sometimes to outermost shell

498. In OF₂, number of bond pair and lone pairs of electrons are respectively:

486. Given are 0_2 , 0_2^+ , 0_2^{2+} and 0_2^{2-} respectively. Find the correct increasing bond order

Here interval and
$$2_{1}^{2} < 0_{2}^{2} < 0_{2}^{2}$$
 or $2_{2}^{2} < 0_{2}^{2} < 0_{2}^{2}$ or $2_{2}^{2} < 0_{2}^{2} < 0_{2}^{2}$ or $2_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0_{2}^{2} < 0$

a) 2, 6	b) 2, 8	c) 2, 10	d) 2, 9				
499. In which pair, the f	rst atom or ion is not larger th	nan the second?					
a) N, F	b) Cl [–] , Cl	c) 0, S	d) Fe ²⁺ , Fe ³⁺				
500. The maximum num	ber of hydrogen bonds that a	molecule of water can have	e is				
a) 1	b) 2	c) 3	d) 4				
501. The isoelectronic s	pecies among the following ar	e:					
$I - CH_3^+; II - NH_2^+; II$	$I = CH_3^+; II = NH_2^+; III = NH_4^+; IV = NH_3$						
a) I, II, III	b) II, III, IV	c) I, II, IV	d) II, I				
502. Dipole moment is e	xhibited by:						
a) 1, 4-dichloroben	zene		$\langle \cdot \rangle$				
b) 1, 2-dichloroben	zene						
c) Trans- 1, 2-dich	loroethene						
d) Trans-1, 2-dichl	oro-2-butene						
503. In a multi-electron	atom, the energy of a 2 p -orbi	tal is:					
a) Less than that of	2 <i>s</i> -orbital						
b) More than that o	f 2 <i>s</i> -orbital						
c) Equal to that of 2	2s-orbital						
d) Double that of 2.	s-orbital						
504. In which molecule	the central atom does not use	<i>sp</i> ³ -hybrid orbitals in its b	onding?				
a) NH ₂	b) BeF_3^-	c) SO ₂ Cl ₂	d) SO ₄ ^{2–}				
505. RbO ₂ is							
a) Peroxide and pa	ramagnetic	b) Peroxide and diama	agnetic				
c) Superoxide and	paramagnetic	d) Superoxide and dia	magnetic				
506. Ionization energy o	f nitrogen is more than oxyge	n because:					
a) Nucleus has mor	e attraction for electrons						
b) Half-filled p-orb	itals are more stable						
c) Nitrogen atom is	small						
a) More penetratio	n effect	a columnta of culmbonilia oci	d ava dua ta ita atmatuwa				
507. The high melting p	b) Cubic	c solvents of sulphannic act	d are due to itsstructure				
a) Simple Ionic	b) Cubic	c) Dipolar Ionic	u) nexagonal				
	b) H SO						
500 Which of the follow	ing sequence regarding ionis:	$c_1 m c_2$	$u_1 m v_3$				
a) $(u > \Delta \sigma > \Delta u$	h) $C_{\rm H} < A_{\rm H} < A_{\rm H}$	c) Cu > Ag < Au	d) $Ag > Cu < Au$				
510 Which molecule has $510 = 10$	s zero dipole moment?						
a) HBr	h) AgI	c) $PhSO_4$	d) H ₂ O				
511. BCl ₂ is a planar mo	lecule, while NCl_2 is pyramida	l because	u) 11 <u>2</u> 0				
a) N – Cl bond is m	ore covalent than B – Cl bond						
b) Nitrogen atom is	smaller than boron atom						
c) B – Cl bond is mo	ore polar than N – Cl bond						
d) BCl ₃ has no lone	pair of electrons but NCl ₃ has	a lone pair of electrons					
512. Hybridisation of th	e underline atom changes in	•					
a) AlH ₃ changes to	AlH ₄	b) H_2 O changes to H_3 C	b) H_2O changes to H_3O^+				
c) NH ₃ changes to NH ₄ ⁺		d) In all cases	d) In all cases				
513. Which molecule ha	s hydrogen bonding	,					
a) CH₄	b) CH₃COOH	c) GeH₄	d) H ₂ Te				
514. The energy release	d when a neutral gaseous ator	n takes up an electron is ca	lled:				
a) Ionization energ	y b) Solvation energy	c) Electronegativity	d) Electron affinity				
515. In NO_3^- ion, number	r of bond pair and lone pair el	ectrons are respectively:					
a) 2, 2	b) 3, 1	c) 1, 3	d) 4, 8				

s-character						
orbital						
Ba > Ca						
of π - bonds present						
in a bolicis present						
Y						
of these						
UE						
—-[1F						
2 or $d^2 p^3$						
e						
The H \sim H hand angle in H O is 1045. This fact can be best evaluated with the bala of						
a) Valence shell electron pair repulsion (VSEPR)b) Molecular orbital theory						
hotwoon budges						
between hydrogen						

ľ	31. Which of the two ions from the list given below that have the geometry that is explained by the same					
	hybridization of orbita	lls, NO_2^- , NO_3^- , NH_2^- , NH_4^+ , SC	N ⁻ ?			
	a) NO ₂ and NH ₂	b) NO ₂ ⁻ and NO ₃ ⁻	c) NH ₄ ⁺ and NO ₃ ⁻	d) SCN ^{$-$} and NH ^{$-$} ₂		
ŗ	532. Which of the following	is non – linear molecule?				
	a) SO ₃	b) CO ₂	c) CS ₂	d) BeCl ₂		
ľ	533. Which contains both c	ovalent and ionic bonds?				
	a) CCl4	b) KCN	c) CaCl ₂	d) H_2O		
ľ	534. In the formation of Na	Cl by combination of Na and	l Cl:			
	a) Sodium and chlorin	e both lose electrons		\sim		
	b) Sodium and chlorin	e both gain electrons		\sim		
	c) Sodium loses but ch	lorine gains electrons				
	d) Sodium gains but ch	lorine loses electrons				
ſ	535. Which of the following	has linear structure?				
	a) CC1	b) C ₂ H ₄	c) C2H2	d) \$0 ₂		
ſ	536. A molecule (X) has (i) four sigma bonds formed	by the overlap of sn^2 and	s - orbitals (ii) one sigma bond		
	formed by sn^2 and sn^2	$\frac{2}{2}$ orbitals and (iii) one π hor	and formed by n and n or	hitals Which of the following is		
	<i>X</i> 7		In formed by p_{χ} and p_{Z} of	bitais. Which of the following is		
	л. э) С. Н.	h C_{2} H_{2} C_{1}	c) C.H.Cl.	d) C. H.		
ſ	537 The lowest ionization	energy would be associated	with the electronic struct			
	a) $1c^2 2c^2 2n^6 3c^1$	b) $1c^2 2c^2 2m^5$	c) $1c^2 2c^2 2n^6$	d) $1s^2 2s^2 2n^6 3s^2$		
	3 13,23 $2p$,33	0 following?	cj 13, 23 2p	uj 13, 23 2p, 33		
•	a) Padius of Clatom is	0.00° while that of Cl ⁺ ion				
	a) Radius of Clatom is	0.99 Å, while that of CI 101	m is $1 E 4 Å$			
	a) The radius of Clate	0.99 A, while that of Na alo	11115 1.54 A			
	d) Dadius of Na storn i	III IS 0.95 A, WIIIe that of U	10111S 0.01 A			
r	uj Kaulus ol Na atolii i	S 0.95 A, while that of Na 10	011 IS 1.54 A			
		lectrons are present in N ₂ ?	-) 2	٥ دل		
r	dj 1 540 Which are of the follow	UJ Z	CJ 3 Sellest hand angle in its m			
		wing compounds has the sh				
r	$d_{\rm J}$ SU ₂	$UJ U\Pi_2$	$c_{j} sn_{2}$	u) NH ₃		
		h NO		4) NO		
r	$d_{\rm J}$ N ₂ U 542. The electronic configu	$UJ NO_2$	$C_{\rm J} N_2 U_5$	uj NO		
	542. The electronic configuration $L(1-2, 2-2, 2-4)$ D(1-2)	Factor of four elements L, P , 2, 2-2, 2-6, 2-1, $O(1-2, 2-2)$, Q and R are given in brac	$2 \times 6 = 2 \times 2$ The formula of ionia		
	$L(1S^2, 2S^2, 2p^2), P(1S^2)$	$(1,25^{\circ},2p^{\circ},35^{\circ}), Q(15^{\circ},25^{\circ}),$	$2p^{\circ}, 3s^{2}, 3p^{\circ}), R(1s^{2}, 2s^{2})$	$2p^\circ$, $3s^2$) The formula of lonic		
	compounds that can be	e formed between these ele	ments are			
	a) L_2p , RL , PQ and R_2Q	b) LP, RL, PQ and RQ	c) P_2L , RL , PQ and RQ	a) LP , R_2L , P_2Q , and RQ		
	543. In which of the follow	ing ionisation processes, th	e bond order has increas	ed and the magnetic behaviour		
	has changed?		$\mathbf{b} \mathbf{c} = \mathbf{c}^{\dagger}$			
	a) $C_2 \rightarrow C_2$	b) NO \rightarrow NO '	c) $0_2 \rightarrow 0_2^+$	d) $N_2 \rightarrow N_2$		
	544. The size of ionic specie	es is correctly given in the o	rder:			
	a) $Cl'^+ > Sl^{++} > Mg^{2+}$	$> Na^+$				
	b) Na ⁺ > Mg ²⁺ > Si ⁴⁺	$> Cl^{7+}$				
	c) $Na^+ > Mg^{2+} > Cl^{7+}$	> Si ⁴⁺				
	d) Cl ⁷⁺ > Na ⁺ > Mg ²⁺	$\sim \mathrm{Si}^{4+}$				
ľ	545. Which of the following	has the minimum bond len	gth?			
	a) 0 ₂	b) 0 ⁺ ₂	c) 0_2^-	d) O_2^{2-}		
ŗ	546. In acetylene molecule, between the carbon atoms there are					
	a) Three pi bonds b) One sigma and two pi bonds		pi bonds			
c) Two sigma and one pi bonds		d) Three sigma bonds				
ŗ	547. The ionic radii of N ^{3–} ,	0 ^{2–} and F [–] are respectively	y given by:			
	a) 1.36, 1.40, 1.71	b) 1.36, 1.71, 1.40	c) 1.71, 1.40, 1.36	d) 1.71, 1.36, 1.40		

548. Bond order of 1.5 is shown by: a) $0_2^{2^-}$ b) 0_2 c) 0^+_2 d) 0_{2}^{-} 549. In which of the process, the bond order increases and magnetic behaviour changes? c) NO \rightarrow NO⁺ d) $0_2 \rightarrow 0_2^+$ a) $N_2 \rightarrow N_2^+$ b) $C_2 \rightarrow C_2^+$ 550. Which involves a bond forming process? a) Stretching rubber b) Dissolution of sugar in water c) Rusting of iron d) Emission of γ -rays by radioactive iron 551. Which is paramagnetic? a) Cl_2O_6 b) $Cl_2 O_7$ c) $Cl_2 O$ d) ClO_2 552. Which one of the following pairs of molecules will have permanent dipole moments for both members? a) SiF₄ and NO₂ b) NO_2 and CO_2 c) NO_2 and O_3 d) SiF₄ and CO_2 553. The state of hybridization of boron and oxygen atom in boric acid (H₃BO₃) is respectively: a) sp^3 , sp^3 b) sp^2 , sp^3 c) sp^3 , sp^2 d) sp^2 , sp^2 554. The correct order towards bond angle is d) $sp^2 < sp^3 < sp$ b) $sp < sp^2 < sp^3$ c) $sp < sp^3 < sp^2$ a) $sp^3 < sp^2 < sp$ 555. Which orbital is used by oxygen atom to form a sigma bond with other oxyen atom in O_2 molecule? b) sp^2 -hybrid orbital c) sp^3 - hybrid orbital d) sp- hybrid orbital a) Pure *p*-orbital 556. Which of the following is a linear molecule? a) BeCl₂ b) H_20 d) CH_4 557. Which involves breaking of covalent bond? c) Melting SiO₂ a) Boiling H_2S b) Melting KCN d) Boiling CF₄ 558. For $\overline{N}H_2$, the best three-dimensional view is 559. For the four successive transition elements (Cr, Mn, Fe and Co), the stability of +2 oxidation state will be there in which of the following order? a) Cr > Mn > Co > Feb) Mn > Fe > Cr > Coc) Fe > Mn > Co > Cr d) $\begin{array}{l} \text{Co} > \text{Mn} > \text{Fe} > \text{Cr} \\ (\text{At. no. Cr} = 24, \text{Mn} = 25, \text{Fe} = 26, \text{Co} = 27) \end{array}$ 560. In PO_4^{3-} , the formal charge on each on each oxygen atom and the P – O bond order respectively are b) -0.75, 1.0 a) -0.75, 0.6 c) −0.75, 1.25 d) -3, 1.25561. An element *X* has 3 electrons in *p*-orbitals and also belongs to III period. Its molecular formula should be: a) X b) X_2 d) X₅ c) X₄ 562. Elements having six electrons in its outermost orbit generally form: a) Complex ion b) Negative ion c) Positive ion d) Zwitter ion 563. Oxygen is divalent, but sulphur exhibits variable valency of 2, 4 and 6, because: a) Sulphur is less electronegative than oxygen b) Sulphur is bigger atom than oxygen c) Ionisation potential of sulphur is more than oxygen d) Of the presence of *d*-orbitals in sulphur 564. Of the following sets which one does not contain isoelectronic species? a) $BO_3^{3-}, CO_3^{2-}, NO_3^{-}$ b) $SO_3^{2-}, CO_3^{2-}, NO_3^{-}$ c) CN^-, N_2, C_2^{2-} d) PO_4^{3-} , SO_4^{2-} , ClO_4^{-} 565. In which of the following, unpaired electrons are present?

KO_2 , AlO_2^- , BaO_2 , NO_2^+						
a) NO ⁺ , BaO ₂	b) KO_2 , AlO_2^-	c) Only KO ₂	d) Only BaO ₂			
566. Which transition invo	olves maximum amount of	energy?				
a) $M^{-}(g) \rightarrow M(g) +$	a) $M^{-}(g) \rightarrow M(g) + e$					
b) $M^{-}(g) \rightarrow M^{+}(g)$ -	+ 2e					
c) $M^+(g) \rightarrow M^{2+}(g)$	+ e					
d) $M^{2+}(g) \rightarrow M^{3+}(g)$) + e					
567. What is the nature of	the bond between B and () in $(C_2H_2)_2OBH_2?$				
a) Covalent		b) Coordinate covalent	\sim			
c) Ionic bond		d) Banana shaped bond				
568. Which does not use s	m^3 -hybrid orbitals in its bu	anding?				
a) BeF $_{2}^{-}$	b) OH ⁺	c) NH ⁺	d) NF ₂			
569. Hybridisation of C ₂ ar	nd Ca of	0,4				
$H_{2}C - CH = C = CH$	– CH ₂ are					
a) sn sn ³	b) sn^2 sn	c) $sn^2 sn^2$	d) sn sn			
570 Maximum covalence	of an atom of an element i	s equal to:	4,50,50			
a) Number of unnair	ed electrons in the s-and <i>n</i>	-orbitals of valency shell				
b) Number of unpair	ed electrons in the <i>n</i> -orbit	als of valency shell				
c) Total number of el	ectrons in the s-and n -orh	sitals of valency shell				
d) Total number of el	ectrons in the <i>n</i> -orbitals o	f valency shell				
571 Which main group el	ections in the p -orbitals of amonts have a different number of the product of	imber of outermost electrons t	aan their group number?			
a) Alkali metals	b) Noble gases	c) Halogons	d) None of these			
aJ Alkali illetais	the crustals of paphthalor		dj None of these			
a) Van der Waale' for	the crystals of haphthalen	a) Hydrogon bonding	d) None of these			
dj vali uti vvadis ili	tes DJ Electrostatic force	es c) Hydrogen bolldnig	uj None of these			
5/3. Which does not show	h) Sm	D Ph	d) Thalling			
aj Al 574 The electronic theory	DJ SN	CJ PD	dj i nallium			
5/4. The electronic theory	of bonding was proposed	Dy Dynamata d	d) M11:1			
a) Pauling	DJ Lewis	c) Bronsted	d) Mullikan			
5/5. The correct order of (2)						
a) $C > B > Be > Ll$	DJ C > Be > B > LI	C J B > C > Be > LI	ај ве > Li > в > С			
576. The hybridisation of r^2	orbitals of N atom in NO_3 ,	NO_2 , and NH_4 are respectively				
a) sp, sp^2, sp^3	b) sp^2 , sp , sp^3	c) sp , sp° , sp^{2}	a) sp ² , sp ³ , sp			
5//. Which of the followin	ig is more ionic?					
a) NaCl	b) KCI	c) MgCl ₂	d) $LaLl_2$			
578. The species showing	$p\pi$ - $d\pi$ overlapping is:	202-				
a) NO_3	b) PO_4^3	c) CO_3^2	d JNO_2			
579. H_2O has a net dipole	moment, while BeF ₂ has z	ero dipole moment, because:				
a) H_2O molecule as li	near while BeF ₂ is bent					
b) BeF ₂ molecule is li	near, while H_2O is bent					
c) Fluorine is more e	lectronegative than oxyger	n				
d) Be is more electro	negative than oxygen					
580. Among the following	which is the strongest oxi	dising agent?				
a) Cl ₂	b) F ₂	c) Br ₂	d) I ₂			
581. Which of the following molecule in its valence shell has three bond pairs of electrons and one lone pair						
electrons?						
a) NH ₃	b) H ₂ O	c) BF ₃	d) CO ₂			
582. Which of the followin	ig statements is correct?					
a) All carbon to carbon bonds contain a σ - bond and one or more π - bonds						
b) All carbon to hydrogen bonds are π - bonds						
c) All oxygen to hydr	ogen bonds are hydrogen	bonds				
d) All carbon to hydrogen bonds are σ - bonds						
--	--	--				
583. Which of the following has sp^2 hybridisation?						
a) C_2H_6 b) C_2H_4	c) BeCl ₂	d) C_2H_2				
584. The formation of energy bonds in solids are in ac	cordance with					
a) Heisenberg's uncertainty principle	b) Bohr's theory					
c) Ohm's law	d) Rutherford's atomic	model				
585. Which of the following configuration is associated $1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + $	1 with biggest jump between $1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + $	n 2nd and 3rd <i>IE</i> ?				
a) $1s^2$, $2s^22p^2$ b) $1s^2$, $2s^22p^2$, $3s^2$	C) $1S^2$, $2S^2 2p^2$, $3S^2$	a) 1s ² , 2s ² 2p ²				
a) Dipole-induced dipole interaction	gen nuor lue is due to:					
h) Dipole-dipole interaction						
c) Hydrogen bond interaction						
d) Dispersion interaction						
587. Correct order of bond length is						
a) $CO_3^{2-} > CO_2 > CO$	b) $CO_2 > CO > CO_3^{2-1}$					
c) $CO > CO_2 > CO_3^{2-}$	d) None of these					
588. Which of the following molecules has pyramidal s	shape?					
a) PCl ₃ b) SO ₃	c) CO ₃ ²⁻	d) NO $_{\overline{3}}$				
589. The molecular electronic configuration of Be_2 is						
a) $\sigma ls^2 \overset{*}{\sigma} ls^2 \sigma 02s^2 \overset{*}{\sigma} 2p^2$ b) $KK\sigma 2S^2$	c) $\sigma ls^2 \overset{*}{\sigma} ls^2 \sigma 02s^2 \overset{*}{\sigma} 2$	s^2 d) None of the above				
590. The maximum number of 90° angles between bo	nd pair-bond pair of electro	ns is observed in				
a) <i>dsp</i> ³ hybridisation	b) $sp^3 d$ hybridization					
c) dsp^2 hybridisation	d) $sp^3 d^2$ hybridisation	1				
591. In which of the following arrangement the order	is not correct according to p	property indicated against it?				
a) Increasing size : $AI^{3+} < Mg^{2+} < Na^+ < F^-$						
b) Increasing IE_1 : B < C < N < O)					
c) Increasing EA_1 : $I < Br < F < CI$						
d) increasing metallic radius : $LI < Na < K < RD$						
2) AICI b) All	c) AlBr					
a) AlCl ₃ D) All ₃ 593 The bond order of individual carbon-carbon bond	CJ AIDI 3	u) Air ₃				
a) One	is in Delizene is.					
h) Two						
c) Between 1 and 2						
d) One and two alternately						
594. In pyrophosphoric acid, $H_4P_2O_7$, number of σ and	$d\pi - p\pi$ bonds are respect	tively				
a) 8 and 2 b) 6 and 2	c) 12 and zero	d) 12 and 2				
595. The percentage s – character of the hybrid orbital	ls in methane, ethene and et	thyne are respectively				
a) 25, 33, 50 b) 25, 50, 75	c) 50, 75, 100	d) 10, 20, 40				
596. The types of bonds present in $CuSO_4 \cdot 5H_2O$ are o	nly					
a) Electrovalent and covalent						
b) Electrovalent and co-ordinate						
c) Electrovalent, covalent and co- ordinate covale	ent					
d) Covalent and co-ordinate covalent						
597. Which pair represents isostructural species?						
a) CH_3 and CH_3' b) NH_4^+ and NH_3	c) SU_4^- and BF_4^-	d J NH_2 and BeF_2				
598. In which of the following species, all the three typ	es of hybrid carbons are pr	esent?				
a) $CH_2 = C = CH_2$	$b_{1} CH_{3} - CH = CH - CI$	П <u>2</u> и-				
$c_J CH_3 - C \equiv C - CH_2'$	$a_J LH_3 - LH = LH - CI$	H ₂				

Page | 37

599. Which statement is not correct? a) Double bond is shorter than a single bond. b) Sigma bond is weaker than π-bond.				
c) Double bond is stronger than a sigma bond.				
d) Covalent bond is stronger than hydrogen bond.				
600. The pair having similar geometry is:				
a) BF_3 , NH_3 b) BF_3 , AIF_3	c) BeF_2, H_2O	d) BCl ₃ , PCl ₃		
601. Which of the following is largest?				
a) Cl ⁻ b) S ²⁻	c) Na ⁺	d) F ⁻		
602. The AsF ₅ molecule is trigonal bipyramidal. The hyb	rid orbitals used by the As a	atoms for bonding are		
a) $d_{x^2-y^2}, d_{z^2}, s, p_x, p_y$ b) d_{xy}, s, p_x, p_y, p_z	c) $s, p_x, p_y, p_z, d_{z^2}$	d) $d_{x^2-y^2}$, s, p_x , p_y		
603. Consider the following halogen containing compour	nds			
(A) CHCl_3 (B) CCl_4				
(C) CH_2Cl_2 (D) CH_3Cl				
(E)	4	\sim		
	A	X		
		× *		
The compounds with a net zero dipole moment are		7		
a) R and E anky	a) C and D calv	d) A and D anks		
a) B and E only D) C only	c) C and D only	d) A and D only		
604. Aikali metals in each period nave:				
a) Largest size				
b) Lowest <i>IE</i>				
c) Highest <i>IE</i>	$\langle \mathcal{N} \mathcal{N}' \rangle$			
d) Highest electronegativity		_		
605 . In a regular octahedral molecule, MX_6 the number of MX_6 th	of $X - M - X$ bonds at 180° is			
a) Inree b) Iwo	CJ SIX	a) Four		
606. Valency means:				
a) Combining capacity of an element				
b) Atomicity of an element				
c) Oxidation number of an element				
a) None of the above				
-) Na		J) P-		
a) Na D) Hg	c) Lu	a) Fe		
608. Which has the largest first ionisation energy?	-) V			
aj Li Dj Na	CJ K	a) KD		
609. Polarization of electrons in acrolein may be written	as:			
a) $\overset{s}{\overset{-}{\overset{-}}}$ = $\overset{s}{\overset{+}{\overset{-}}}$ b) $\overset{s}{\overset{-}{\overset{-}}}$ = $\overset{s}{\overset{+}{\overset{+}}}$	c) $\frac{\delta}{CH} = \frac{\delta^+}{CH}$ $CH = O$	d) δ^+		
$CH_2 = CH = CH = O$	$CH_2 - CH - CH = 0$	$\operatorname{cm}_2 = \operatorname{cm}_2 = \operatorname{cm}_2$		
610. Which bond has the highest bond energy?				
a) Coordinate bond b) Sigma bond	c) Multiple bond	d) Polar covalent bond		
611. In which of the following molecules the van der Was	als' forces is likely to be the	e most important in		
determining the melting and boiling point?				
	b) H_2S			
c) Br_2	d) HCI			
612. The higher values of specific heat of water in compa	irison to other liquids is du	е то:		
a) High dielectric constant				
b) Polarity				
c) H-bonding				
a) None of the above				

613. Which contains both polar and non-polar covalent bonds?

7
then the bond is
Non-polar bond
× •
Cl0 ₂
1
Br—Cl
00011
I COOH
\bigtriangleup
\checkmark
t nitrogen stom.
t inti ogen atom,
+1, -1, +1
у
sp^2 , sp^3
NO_3^-
NO_3^-
NO_3^-
NO ⁻ 3
NO ₃ -
NO ⁻ 3
NO ₃
NO_3^- e <i>XY</i> ₂ shown below?
NO ₃ e <i>XY</i> 2 shown below? 180°
NO ₃ e <i>XY</i> 2 shown below? 180°
NO3 e <i>XY</i> 2 shown below? 180° CCl4
NO_3^- e <i>XY</i> ₂ shown below? 180° CCl ₄
NO3 e <i>XY</i> 2 shown below? 180° CCl4
NO ₃ e <i>XY</i> ₂ shown below? 180° CCl ₄
NO ₃ e <i>XY</i> 2 shown below? 180° CCl4
NO ₃ e <i>XY</i> ₂ shown below? 180° CCl ₄

a) CO_2 b) H_2O c) SO_2 d) H_2O_2 629. Out of the compounds below the vapour pressure of (*B*) at a particular temperature is

OH NO₂ NO₂ (B)(A)a) Higher than that of (A) b) lower than that of (*A*) c) Higher or lower than (A), depending on the size ofd) Same as that of (A) the vessel 630. Which ion has a higher polarizing power? c) Ca²⁺ a) Mg²⁺ b) Al³⁺ 631. Which of the following represent the given mode of hybridisation $sp^2 - sp^2 - sp$ from left to right? a) $H_2C = CH - C \equiv CN$ b) $HC \equiv C - CH_2 - C \equiv CH$ c) $H_2C = C = C = CH_2$ d) $HC = C - CH_2 - C = CH$ 632. The solubility of KCl is relatively more in (where D is dielectric constant): a) $C_6 H_6 (D = 0)$ b) $(CH_3)_2CO(D = 2)$ c) $CH_3OH(D = 32)$ d) $CCl_4(D = 0)$ 633. Elements have electronegativities 1.2 and 3.0, bond formed between them would be b) Covalent c) Co-ordinate a) Ionic d) metallic 634. Among the following, the pair in which the two species are not isostructural, is a) SiF₄ and SF₄ b) IO₃⁻ and XeO₃ c) BH_4^- and NH_4^+ d) PF_6^- and SF_6 635. Which has zero dipole moment? a) ClF b) PCl_3 c) SiF₄ d) CFCl₃ 636. Which of the following molecules is covalent and shows expanded octet in its formation? a) HF b) NF_3 c) BF_3 d) ClF_3 637. Which one of the following is a correct set? a) H_20 , sp^3 , angular b) $BCl_3 sp^3$, angular c) NH₄, dsp^2 , square planar d) CH_4 , dsp^2 , tetrahedral 638. Which property of halogens increases from F to I? a) Electronegativity b) First ionization energy c) Bond length in the molecule d) None of the above 639. The total number of bonds in acetylene molecule is: a) One d) Five b) Two c) Three 640. The number of antibonding electron pairs in O_2^{2-} molecular ion on the basis of molecular orbital theory is (Atomic number of 0 is 18.) a) 5 b) 4 c) 3 d) 2 641. Variable valency is characteristic of: a) Noble gases b) Alkali metals c) Transition metals d) Non-metallic elements 642. In which molecule all atoms are coplanar? a) CH₄ b) BF_3 c) PF_3 d) NH_3

643. During change of O_2 to O_2^- ion, the electron	n adds on which one of the follow	wing orbitals?
a) π * orbital b) π orbital	c) σ* orbital	d) σ orbital
644. Bond energy of covalent O—H bond in wa	ter is:	
a) Greater than bond energy of hydrogen l	bond	
b) Equal to bond energy of hydrogen bond	1	
c) Less than bond energy of hydrogen bon	nd	
d) None of the above		
645. Which one of the following has a coordination	te bond?	
a) NH₄Cl b) AlCl₂	c) NaCl	d) Cl_2
646. Which carbon is more electronegative?	, ,	
a) sp^3 hybridised carbon		
b) sp – hybridised carbon		
c) sp^2 hybridised carbon		
d) Always same irrespective of its hybrid s	state	
647. Among NH ₂ , BeCl ₂ , CO ₂ and H ₂ O, the non-	linear molecules are:	
a) BeCl ₂ and H_2O b) BeCl ₂ and CO	D_{2} c) NH ₂ and H ₂ O	d) NH_{2} and CO_{2}
648 Paramagnetism is exhibited by molecules:		
a) Not attracted into a magnetic field	~	
h) Containing only naired electrons		
c) Carrying a positive charge		
d) Containing unpaired electrons		
649 Which molecule has the largest dipole mo	ment?	
a) HF b) HCl	c) HBr	d) HI
650 The intermolecular attractive forces vary i	in the order:	u) III
a) Water < alcohol < ether		
b) Water \geq alcohol \geq ether		
c) Alcohol $>$ water $<$ ether	CY	
d) Ether $>$ water $>$ alcohol	2.2	
651 Which of the following species has a linear	r shane?	
a) NO_{a}^{+} b) O_{a}	c) NO_{-}^{-}	d) SO ₂
652. The electronic configuration of 4 elements	K L M and N are	aj 562
$K = 1s^2 2s^22n^1$ $L = 1s^2 2s^22n^2$	6	
$M = 1s^2, 2s^2 2p^4$ $N = 1s^2, 2s^2 2p^4$	3	
The element that would form a diatomic m	, polecule with double bond is:	
a) K b) I	c) M	d) N
653 Which of the following will provide the mo	ost efficient overlan?	a) N
a_{2} b_{3} c_{2} c_{3} c_{4} c_{5} c_{6} c_{7} b_{1} c_{7} c_{7	c) $sn^2 - sn^2$	d) $sn - sn$
a) $s - s$ b) $s - p$ 654. The state of hybridization of C C C and	$c_{j} s_{p} - s_{p}$	$u_J sp - sp$
CH_2 CH_2	teg of the hydrocarbon,	
$CH_3 - CH = CH - C - C \equiv CH$		
CH ₃		
is in the following sequence:		
a) sp , sp^2 , sp^3 and sp^2 b) sp , sp^3 , sp^2 a	and sp^3 c) sp^3 , sp^2 , sp^2 and sp^3	sp d) sp , sp^2 , sp^2 and sp^3
655. Four diatomic species are listed below in c	different sequences. Which of the	ese represents the correct order
of their increasing bond order?		
a) NO < C_2^{2-} < O_2^- < He ₂ ⁺		
b) $C_2^{2-} < He_2^+ < NO < O_2^-$		
c) $\text{He}_2^+ < \text{O}_2^- < \text{NO} < \text{C}_2^{2-}$		
d) $0_2^- < NO < C_2^{2-} < He_2^+$		

656. Which one species has the longest bond length? a) NO+ c) 0^+_2 d) N_{2}^{+} b) 0_2^- 657. The pair of molecules forming strongest hydrogen bonds are $CH_3 - C - CH_3$ and $CHCl_3$ b) a) SiH₄ and SiF₆ H - C - OH and $CH_3 - C - OH$ c) Ш d) H_2O and H_2 0 0 658. Which one of the following has not triangular pyramidal shape? a) NH₃ b) NCl_3 c) PF_3 d) BCl₂ 659. A covalent bond is formed between the atoms by the overlapping of orbitals containing: a) Single electron b) Paired electron c) Single electron with parallel spin d) Single electron with opposite spin 660. Which of the following bonds required the largest amount of bond energy to dissociate the atom concerned? a) H – H bond in H_2 b) 0 = 0 bond in 0_2 c) N \equiv N bond in N₂ d) C – C bond in C_2H_6 661. The covalency of nitrogen in HNO₃ is: a) Zero b) 3 c) 4 d) 5 662. Which is distilled first? a) Liquid H₂ b) Liquid CO₂ c) Liquid O_2 d) Liquid N₂ 663. Which one of the following is a correct set? a) H_2O , sp^3 , angular b) H_2O , sp^2 , linear c) NH_4^+ , dsp^2 , square planar d) CH_4 , dsp^2 , tetrahedral 664. Which is correct order for electron gain enthalpy? b) 0 < S < F < Cl a) S < 0 < Cl < Fc) Cl < F < S < 0d) F < Cl < 0 < S665. Which is a pyramidal structure? a) Trimethylamine b) Methanol c) Acetylene d) Water 666. Among the following mixtures, dipole – dipole as the major interaction, is present in a) Benzene and ethanol b) Acetonitrile and acetone c) KCl and water d) Benzene and carbon tetrachloride 667. In dry ice there are ... in between molecules. a) Ionic bond b) Covalent bond c) Hydrogen bond d) None of these 668. The dipole moment of *o*, *p* and *m*-dichlorobenzene will be in the order a) o > p > mb) p > o > mc) m > o > pd) o > m > p669. Which formulae does not correctly represents the bonding capacity of the atom involved? c) $O \leftarrow N$ H d) H - C = C $H \rightarrow P \rightarrow H$ a) 670. Which has minimum ionic radius? a) N³⁻ b) K⁺ c) Na⁺ d) F⁻ 671. The bond order is maximum in d) 0_2^{2-} a) 0_2 b) 0^+_2 c) 0_2^-

672. PF ₃ molecule is:				
a) Square planar	b) Trigonal bipyramidal	c) Tetrahedral	d) Trigonal pyramidal	
673. Resonance is due to:				
a) Delocalization of σ	a) Delocalization of σ -electrons			
b) Delocalization of π	-electrons			
c) Migration of H ator	ms			
d) Migration of proto	ns			
674. Which property is co	mmonly exhibited by a covalen	t compound?		
a) High solubility in v	vater			
b) Low m.p.				
c) High electrical con	ductivity			
d) High b.p.				
675. Which of the followin	g is an electrovalent linkage?			
a) CH ₄	b) SiCl ₄	c) MgCl ₂	d) BF ₃	
676. The decreasing value	s of bond angles from NH_3 (10)	6°) to SbH ₃ (101°) down	group-15 of the periodic	
table is due to:				
a) Increasing bp - bp	repulsion	Ć		
b) Increasing <i>p</i> -orbita	al character in sp^3			
c) Decreasing <i>lp</i> - <i>bp</i>	repulsion			
d) Decreasing electro	negativity			
677. The shape of ClO_3^- acc	cording to VSEPR model is:			
a) Planar triangle	b) Pyramidal	c) Tetrahedral	d) Square planar	
678. Which metal has a gro	eater tendency to form metal o	xide?		
a) Cr	b) Fe	c) Al	d) Ca	
679. The charge/size ratio	o of a cation determines its po	larising power. Which on	e of the following sequences	
represents the increa	sing order of the polarising por	wer of the cationic species	s, K ⁺ , Ca ²⁺ , Mg ²⁺ , Be ²⁺ ?	
a) $Mg^{2+} < Be^{2+} < K^{2+}$	+ < Ca ²⁺	b) Be ²⁺ < K ⁺ < Ca ²⁺ <	<i>M</i> g ²⁺	
c) $K^+ < Ca^{2+} < Mg^{2+}$	+ < Be ²⁺	d) $Ca^{2+} < Mg^{2+} < Be^{2+}$	- < K ⁺	
680. A <i>p</i> -block element in	which last electron enters into	s-orbitals of valence shel	l instead of <i>p</i> -orbital is:	
a) As	b) Ga	c) No such element exis	t d) He	
681. How many electron p	airs are present in valence she	ll of oxygen in water mole	cule?	
a) 4	b) 1	c) 2	d) 3	
682. Number of electrons	in a the valence orbit of nitroge	en in an ammonia molecul	e is	
a) 8	b) 5	c) 6	d) 7	
683. The number of valence	cy electrons in carbon atom is:			
a) Zero	b) 2	c) 6	d) 4	
684. The structure of IF_5 of	can be best described as			
	F	F	d) None of these	
F.	F_	F, F		
$I \xrightarrow{72^{\circ}} F$	h) 72° [30° F	()		
		cy 90°		
F F	F´ _	F ···· F		
	F			
685. The relationship betw	veen the dissociation energy an	1d N ₂ and N ₂ is		
a) dissociation energy	y of N_2 = dissociation energy o	of N ₂ '	6 N+	
b) dissociation energy	y of N_2 can either be lower or h	ligher than the dissociatio	in energy of N_2	
cj dissociation energ	y of $N_2 > association energy of N_2 > dissociation energy of N_2 > discound of N_$			
a) dissociation energy	y of $N_2^+ > alsociation energy of (f_{22}, f_{22}, f_{22}, f_{22})$	DI IN ₂		
b b b b b b b b b b	S (IOT H - S - H) IS:			
a) Same as that of Cl–	–ве—сі in BeCl ₂			

b) Greater than H—N—H bond angle in NH_3

c) Greater than H—Se—H and less than H—O—H d) Same as Cl—Sn— Cl in SnCl₂ 687. Which one among the following does not have the hydrogen bond? b) Water c) Liquid NH₃ a) Phenol d) Liquid HCl 688. Which of the following molecules/ions does not contain unpaired electrons. a) 0^{2}_{7} c) N_{2}^{+} d) 0_2 b) B_2 689. The C - O - H bond angle in ethanol is nearly a) 90 b) 104 c) 120 d) 180 690. Which one of the following does not have sp^2 hybridised carbon? b) Acetic acid c) Acetonitrile d) Acetamide a) Acetone 691. Among the following elements Ca, Mg, P and Cl the order of increasing atomic radius is: a) Mg < Ca < Cl < P b) Cl < P < Mg < Cac) P < Cl < Ca < Mgd) Ca < Mg692. Which has a giant covalent structure? a) PbO_2 b) SiO_2 c) NaCl d) AlCl₂ 693. Bond angles of NH₃, PH₃, AsH₃ and SbH₃ is in the order b) $SbH_3 > AsH_3 > PH_3 > NH_3$ a) $PH_3 > AsH_3 > SbH_3 > NH_3$ c) $SbH_3 > AsH_3 > NH_3 > PH_3$ d) $NH_3 > PH_3 > AsH_3 > SbH_3$ 694. Amongst the elements with following electronic configurations, which one of them may have the highest ionization energy? d) Ar[$3d^{10}4s^24p^3$] a) Ne $[3s^23p^1]$ b) Ne[$3s^2 3p^3$] c) Ne[$3s^23p^2$] 695. Based on VSEPR theory, the number of 90 degree F - Br - F angles in BrF_5 is a) 0 b) 1 c) 2 d) 3 696. Which one of the following elements has lower value of ionisation energy? a) Mg b) Rb c) Li d) Ca 697. The lattice energy order for lithium halide is: a) LiF > LiCl > LiBr > LiIb) LiCl > LiF > LiBr > LiIc) LiBr > LiCl > LiF > LiId) LiI > LiBr > LiCl > LiF698. Among the species: CO_2 , CH_3COO^- , $CO_1CO_3^{2-}$, HCHO which has the weakest C – O bond? a) CO c) CO_3^{2-} b) CO_2 d) CH₃COO⁻ 699. Peroxide ion (i) has five completely filled antibonding molecular orbitals (ii) is diamagnetic (iii) has bond order one (iv) is isoelectronic with neon Which one of these is correct? a) (ii) and (iii) b) (i),(ii) and (iv) d) (i) and (iv) c) (i),(ii) and (iii) 700. Which is the weakest among the following type of bond? a) Ionic bond b) Covalent bond c) Metallic bond d) Hydrogen bond 701. In which of the following pairs of molecules/ions, the central atom has sp^2 -hybridization? a) NO_2 and NH_3 b) BF_3 and $NO_2^$ c) NH_2^- and H_2O d) BF_3 and NH_2^- 702. Bond length decreases with: a) Decrease in size of the atom b) Increase in the number of bonds between the atoms c) Decrease in bond order d) Decrease in the number of bonds between the atoms 703. Which of the following molecules/ ions does not contain unpaired electrons? a) 0^{2-}_{2} b) B_2 c) N_{2}^{+} d) 0_2 704. The structure of IF_7 is

a) Square pyramid b) Trigonal bipyramid c) Octahedral d) Pentagonal bipyramid 705. The species C₂ a) Has one σ bond and one π bond b) Has both π bonds c) Has both σ bonds d) Does not exist 706. In which of the following bond angle is maximum? a) NH₃ b) NH_4^+ c) PCl₅ d) SCl_2 707. Oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below $\frac{1}{2}\operatorname{Cl}_{2}(g) \xrightarrow{\frac{1}{2}\Delta_{\operatorname{diss}}H^{\circ}} \operatorname{Cl}(g) \xrightarrow{\Delta_{\operatorname{EA}}H^{\circ}} \operatorname{Cl}^{-}(g) \xrightarrow{\Delta_{\operatorname{hyd}}H^{\circ}} \operatorname{Cl}^{-}(aq)$ The energy involved in the conversion of $\frac{1}{2}$ Cl₂(g) to Cl⁻(*aq*)(Using the data) $\Delta_{diss^{H^{\circ}Cl_{2}}} = 240 \text{ kJ mol}^{-1}$ $\Delta_{\mathrm{EA}^{H^{\circ}}\mathrm{Cl}} = -349 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$ $\Delta_{hvd} H^{\circ}Cl = -381 \text{ kJ mol}^{-1}$ will be a) $+152 \text{ kJ mol}^{-1}$ b) -610 kJ mol⁻¹ c) -850 kJ mol⁻¹ d) +120 kJ mol⁻¹ 708. The hybridisation of the *ipso* – carbon dichlorobenzene is d) *sp*³ hybridised b) *sp*² hybridised c) $sp^2 d$ hybridized a) *sp* hybridized 709. Which of the following has maximum dipole moment? d) NI_3 a) NCl₃ b) NBr_3 c) NH₃ 710. The molecule having largest dipole moment among the following is c) CHCl₂ b) CH_4 d) CCl₄ a) CHl₃ 711. Which of the following diatomic molecules would be stabilized by the removal of an electron? a) C_2 b) CN c) N_2 d) 0_2 712. Which of the following possess maximum hydration energy? a) MgSO₄ b) RaSO₄ c) $SrSO_4$ d) BaSO₄ 713. In which of the following hydrogen bond is present? a) H₂ b) Ice c) Sulphur d) Hydrocarbon 714. The correct order of decreasing polarisability of ion is: c) I⁻, Br⁻, Cl⁻, F⁻ a) Cl⁻, Br⁻, I⁻, F⁻ b) F⁻, I⁻, Br⁻, Cl⁻ d) F⁻, Cl⁻, Br⁻, I⁻ 715. Which is highest melting point halide? b) NaBr a) NaCl c) NaF d) NaI 716. Number of σ and π bonds in acetylene are b) 2 and 2 a) 3 and 2 c) 2 and 3 d) 4 and 3 717. Which of the following halides is least stable and has doubtful existence? a) CI₄ b) Gel₄ c) SnI₄ d) PbI₄ 718. C – C bond length is maximum in a) Diamond b) Graphite c) Naphthalene d) Fullerene 719. The electronegativity difference between N and F is greater than that between N and H yet the dipole moment of NH_3 (1.5 D) is larger than that of NF_3 (0.2D). This is because: a) In NH₃ as well as NF₃ the atomic dipole and bond dipole are in opposite directions. In NH₃ the atomic dipole and bond dipole are in the opposite directions whereas in NF₃ these are in the b) same direction. c) In NH₃ as well as in NF₃ the atomic dipole and bond dipole are in the same direction. In $\rm NH_3$ the atomic dipole and bond dipole are in the same direction whereas in $\rm NF_3$ these are in opposite directions. 720. Resonance is not shown by: c) CO_3^{2-} d) SiO_2 a) C_6H_6 b) CO_2 721. The molecular shapes of SF_4 , CF_4 and XeF_4 are a) Different with 1, 0 and 2 lone pairs of electrons on the central atom, respectively

b) Different with 0, 1 and 2 lone pairs of electrons o	n the central atom, respect	tively
c) The same with 1, 1 and 1 lone pairs of electrons of	on the central atoms, respe	ctively
d) The same with 2, 0 and 1 lone pairs of electrons of	on the central atom, respec	tively
722. The shape of IF ₇ molecule is		
a) Pentagonal bipyramidal	b) Trigonal bipyramidal	
c) Tetrahedral	d) Octahedral	
723. Decreasing order of C – C bond length is		
$(I)C_2H_4$ $(II)C_2H_2$		
(III) C_6H_6 (IV) C_2H_6		\frown
a) $IV > III > I > II$ b) $I > II > IV > III$	c) II > $I > IV > III$	d) $IV > I > III > II$
724. In which of the following compounds, the bonds have	ve the largest percentage o	f ionic character:
a) H_2O b) HF	c) IBr	d) $N_2 O_4$
725. Oxygen and sulphur both are the member of same	group in Periodic Table b	ut H_2O is liquid while H_2S is
gas because	0 1	
a) Molecular weight of water is more		
b) Electronegativity of sulphur is more	4	$\mathbf{\nabla}$
c) H_2S is weak acid	Ć	
d) Water molecules are having strong hydrogen bor	nds between them	
726. The linear structure is possessed by:		
a) SnCl ₂ b) NCO ⁻	c) NO_{2}^{+}	d) CS ₂
727 When the hybridization state of carbon atom chang	es from sn^3 to sn^2 and final	r_{1} r_{2}
the hybridized orbitals:		ing to sp, the ungle between
a) Decreases gradually		
h) Decreases considerably		
c) Is not affected	X) ^r	
d) Increases progressively	JY III	
728 Which species has the maximum number of long has	ir of electrons on the centr	al atom?
2) [C[0 ⁻¹] b) YeF.	c) SF.	
720 Which concert best explains that a nitronhanol is n	c_{j} or $_{4}$	uj [13] henol?
a) Reconance	fore volatile than p-intropi	
h) Staric hinderance		
c) Hydrogen bond		
d) Hyperconjugation		
730 How many honded electron pairs are present in IF	molecule?	
730. How many boliced electron pairs are present in 17	c) 5	d) 8
731 The comparatively high h p. of HE is due to	c) 5	uj o
a) High reactivity of fluorine		
h) Small size of hydrogen atom		
c) Formation of hydrogon honds and consequent as	exociation	
d) High IF of fluroine	Sociation	
722 Which one of the following energies is diamagnetic in	a natura?	
7.52. Which one of the following species is diamagnetic in	i liatule:	d) Ho+
722 The unequal sharing of bonded pair of electrons bet	$c_{J} m_{2}$	$u_{1} me_{2}$
a) Jonic hand		cule gives lise to.
a) Tollic bolid b) Polar covalent bond		
a) Non polor covalent bond		
d) None of the shows		
a) None of the following program of the set	40	
7.54. III which of the following process energy is liberated	a^{1}	d) 0^{-1} + c 0^{2-1}
aj $\Box \rightarrow \Box + e$ Dj H $\Box \rightarrow H + U$	$c_J c_I + e \rightarrow c_I$	$u J \cup + e \rightarrow 0^-$
755. Identify the least stable ion amongst the following:		

a) Li ⁻	b) Be ⁻	c) B ⁻	d) C ⁻
736. The lowest bond en	ergy exist in the following bo	onds for:	
a) C—C	b) N—N	c) H—H	d) 0—0
737. Number of lone pai	r (s) in XeOF ₄ is/are		
a) 0	b) 1	c) 2	d) 3
738. Which one is electr	on deficient compound?		
a) NH ₃	b) ICl	c) BCl ₃	d) PCl ₃
739. Which type of bond	is present in H ₂ S molecule?		
a) Ionic bond		b) Covalent bond	
c) Coordinate		d) All of three	
740. In compound <i>X</i> , all	the bond angles are exactly 1	09°28′ , X is:	
a) Chloromethane	b) Iodoform	c) Carbon tetrachloride	d) Chloroform
741. The hybridisation of	of P in PCl ₅ is		
a) <i>sp</i> ²	b) <i>sp</i> ³ <i>d</i>	c) <i>sp</i> ³	d) dsp^2
742. Pauling's electrone	gativity values for elements a	re useful in predicting:	\sim
a) Polarity of bonds	s in molecules		X
b) Position of eleme	ents in electromotive series		
c) Coordination nu	mber		7
d) Dipole moment o	of various molecules		
743. The hybridization of	of carbon atoms in C—C single	e bond of $HC \equiv C - CH = CH_2$ is:	
a) sp^3-sp^3	b) $sp^2 - sp^3$	c) $sp-sp^2$	d) sp^3-sp
744. It is thought that at	oms combine with each other	r such that the outermost orbit	acquires a stable
configuration of 8 e	lectrons. If stability were atta	ained with 6 electrons rather t	han with 8, what would be
the formula of the s	table fluoride ions?		
a) F ³⁺	b) F ⁺	c) F ⁻	d) F ²⁻
745. The number of anti	bonding electrons pairs in O_2^2	[–] on the basis of MO theory ar	e:
a) 4	b) 3	c) 2	d) 5
746. Which has triangula	ar planar shape?		
a) CH_3^+	b) ClO_2^-	c) H ₃ 0 ⁺	d) ClO_3^-
747. Specify the coordin	ation geometry around and h	ybridization of N and B atoms	in a 1:1 complex of BF ₃ and
NH ₃ :			
a) N : tetrahedral, s	p^{3} ; B : tetrahedral, sp^{3}		
b) N : pyramidal, sp	r^3 ; B : pyramidal, sp^3		
c) N : pyramidal, sp	P^3 ; B : planar, sp^2		
d) N : pyramidal, sp	³ ; B: tetrahedral, <i>sp</i> ³		
748. Which of the follow	ing molecule has highest bon	id energy?	
a) $C - C$	b) N – N	c) $0 - 0$	d) F — F
749. The number of oxy	gen atoms bonded to one pho	sphorus atom in P_4O_6 is	
a) 4	b) 3	c) 6	d) 5
750. Bond energies in N	J, NO^+ and NO^- are such as		
a) $NO^- > NO > NO$	b) $NO^+ > NO^- > NO$	c) NO > NO ^{$-$} > NO ^{$+$}	d) $NO^+ > NO > NO^-$
751. In XeF ₆ , oxidation s	state and state of hybridisatic	on of Xe and shape of the mole $\frac{3}{2}$	cule are, respectively
(a) +6, $sp^3 d^3$, disto	rted octahedral	b) +4, $sp^3 d^2$, square pla	nar
c) +6, sp^3 , pyramic		d) +6, sp^3d^2 , square pyra	amidal
752. Which one of the fo	llowing pairs of species have	the same bond order?	
a) CN^- and NO^+	b) CN^- and CN^+	c) U_2 and CN^-	a) NO' and CO
/53. The bond length of	species U_2 , U_2 and U_2^- are in t	the order of	$b \circ b \circ c = b \circ c^+$
a) $0_2^+ > 0_2^- > 0_2^-$	b) $U_2^- > U_2 > U_2^+$	c) $0_2 > 0_2^+ > 0_2^-$	a) $U_2 > U_2^- > U_2^+$
754. Which hybridizatio	n results non-polar orbitals?	2	N 1 2
aj <i>sp</i>	b) <i>sp</i> ²	c) <i>sp</i> °	d) dsp ²

755. The a -orbital invol	ed in <i>sp³d</i> hybridization is		
a) $d_{x^2 - y^2}$	b) d_{xy}	c) d_{z^2}	d) d_{zx}
756. The element with s	trong electropositive nature	is:	
a) Cu	b) Cs	c) Cr	d) Ba
757. Which statement is	correct?		
a) X ⁺ ion is larger	than X^- ion		
b) X^- ion is larger i	in size than X atom		
c) X^+ and X^- have	the same size		
d) X^+ ion is larger i	in size than X atom		· · ·
758. SF ₂ , SF ₄ and SF ₆ ha	we the hybridisations at sulp	hur atom respectively, as	
a) sp^2 , sp^3 , sp^2d^2	b) sp^3 , sp^3 , sp^3d^2	c) sp^3 , sp^3d , sp^3d^2	d) sp^3 , spd^2 , d^2sp^3
759. Solid CH ₄ is:			
a) Molecular solid	b) Ionic solid	c) Covalent solid	d) Not exist
760. The bond angles of	1 NH ₃ , NH ₄ ⁺ and NH ₂ ⁻ are in the	order	
a) $NH_2^- > NH_3 > N$	H_4^+ b) $NH_4^+ > NH_3 > NH_3$	l_2^- c) $NH_3 > NH_2^- > NH_2^-$	$d) \text{ NH} > \text{NH}_4^+ > \text{NH}_2^-$
761. <i>sp</i> ² -hybridization i	s shown by:		
a) BeCl ₂	b) BF ₃	c) NH ₃	d) XeF ₂
762. Cl – P – Cl bond ar	igles in PCl ₅ molecule are		
a) 120 and 90	b) 60 and 90	c) 60 and 120	d) 120 and 30
763. Which one of the fo	ollowing pairs is isostructura	l (<i>i.e.</i> , having the same shap	be and hybridization)?
a) [NF ₃ and BF ₃]	b) $[BF_4^- \text{ and } NH_4^+]$	c) [BCl ₃ and BrCl ₃]	d) [NH ₃ and NO_3^-]
764. Which one of the fo	ollowing sets of ions represer	nts a collection of isoelectro	nic species?
a) K ⁺ , Cl ⁻ , Ca ²⁺ , Sc ²	³⁺ b) Ba ²⁺ , Sr ²⁺ , K ⁺ , Ca ²	c) $N^{3-}, 0^{2-}, F^{-}, S^{2-}$	d) Li ⁺ , Na ⁺ , Mg ²⁺ , Ca ²⁺
765. Which molecule ha	s zero dipole-moment?		
a) HF	b) HBr	c) H ₂ 0	d) CO_2
766. Four diatomic spec	ies are listed below. Identify	the correct order in which t	the bond order is increasing in
766. Four diatomic spec them:	ies are listed below. Identify	the correct order in which t	the bond order is increasing in
766. Four diatomic spec them: a) NO $< O_2^- < C_2^{2-}$	ies are listed below. Identify < He ₂ ⁺	the correct order in which t	the bond order is increasing in
766. Four diatomic spec them: a) NO $< O_2^- < C_2^{2-}$ b) $O_2^- < NO < C_2^{2-}$	ies are listed below. Identify < He ⁺ < He ⁺ ₂	the correct order in which t	the bond order is increasing in
766. Four diatomic spec them: a) NO $< O_2^- < C_2^{2^-}$ b) $O_2^- < NO < C_2^{2^-}$ c) $C_2^{2^-} < He_2^+ < O_2^-$	The second seco	the correct order in which t	the bond order is increasing in
766. Four diatomic spec them: a) NO $< O_2^- < C_2^{2^-}$ b) $O_2^- < NO < C_2^{2^-}$ c) $C_2^{2^-} < He_2^+ < O_2^-$ d) $He_2^+ < O_2^- < NO$	ties are listed below. Identify $< He_2^+$ $< He_2^+$ < NO $< C_2^{2^-}$	the correct order in which t	the bond order is increasing in
766. Four diatomic spec them: a) NO $< O_2^- < C_2^{2^-}$ b) $O_2^- < NO < C_2^{2^-}$ c) $C_2^{2^-} < He_2^+ < O_2^-$ d) $He_2^+ < O_2^- < NO$ 767. Which one of the fo	ties are listed below. Identify $< He_2^+$ $< He_2^+$ < NO $< C_2^{2^-}$ blowing compounds has bon	the correct order in which t d angle as nearly 90°?	the bond order is increasing in
766. Four diatomic spec them: a) NO $< O_2^- < C_2^{2^-}$ b) $O_2^- < NO < C_2^{2^-}$ c) $C_2^{2^-} < He_2^+ < O_2^-$ d) $He_2^+ < O_2^- < NO$ 767. Which one of the for a) NH ₃	ies are listed below. Identify $< He_2^+$ $< He_2^+$ $< C_2^{2-}$ ollowing compounds has bon b) H ₂ S	the correct order in which t d angle as nearly 90°? c) H ₂ O	the bond order is increasing in d) CH ₄
766. Four diatomic spec them: a) $NO < O_2^- < C_2^{2^-}$ b) $O_2^- < NO < C_2^{2^-}$ c) $C_2^{2^-} < He_2^+ < O_2^-$ d) $He_2^+ < O_2^- < NO$ 767. Which one of the for a) NH_3 768. The hybrid state of	ties are listed below. Identify $< He_2^+$ $< He_2^+$ < NO $< C_2^{2^-}$ blowing compounds has bon b) H ₂ S sulphur in SO ₃ molecule is	the correct order in which t d angle as nearly 90°? c) H ₂ O	the bond order is increasing in d) CH ₄
766. Four diatomic spec them: a) NO $< O_2^- < C_2^{2^-}$ b) $O_2^- < NO < C_2^{2^-}$ c) $C_2^{2^-} < He_2^+ < O_2^-$ d) $He_2^+ < O_2^- < NO$ 767. Which one of the for a) NH ₃ 768. The hybrid state of a) sp^3d	ies are listed below. Identify $< He_2^+$ $< He_2^+$ < NO $< C_2^{2^-}$ ollowing compounds has bon b) H ₂ S sulphur in SO ₃ molecule is b) sp ³	the correct order in which t d angle as nearly 90°? c) H ₂ O c) <i>sp</i> ³ <i>d</i> ²	the bond order is increasing in d) CH_4 d) sp^2
766. Four diatomic spec them: a) NO $< O_2^- < C_2^{2^-}$ b) $O_2^- < NO < C_2^{2^-}$ c) $C_2^{2^-} < He_2^+ < O_2^-$ d) $He_2^+ < O_2^- < NO$ 767. Which one of the for a) NH ₃ 768. The hybrid state of a) sp^3d 769. In which of the following the following spectrum of the following spectrum	ties are listed below. Identify $< He_2^+$ $< He_2^+$ < NO $< C_2^{2^-}$ blowing compounds has bon b) H ₂ S sulphur in SO ₃ molecule is b) sp ³ owing pair both molecules do	the correct order in which to d angle as nearly 90°? c) H ₂ O c) <i>sp</i> ³ <i>d</i> ² o not possess same type of h	the bond order is increasing in d) CH_4 d) sp^2 hybridisation?
766. Four diatomic spec them: a) NO $< O_2^- < C_2^{2^-}$ b) $O_2^- < NO < C_2^{2^-}$ c) $C_2^{2^-} < He_2^+ < O_2^-$ d) $He_2^+ < O_2^- < NO$ 767. Which one of the form a) NH ₃ 768. The hybrid state of a) sp^3d 769. In which of the following the following of the	ties are listed below. Identify $< He_2^+$ $< He_2^+$ < NO $< C_2^{2-}$ bllowing compounds has bon b) H ₂ S sulphur in SO ₃ molecule is b) sp ³ owing pair both molecules de b) PCl ₅ and SF ₄	the correct order in which the correct order in which the correct order in which the damage as nearly 90°? c) H_2O c) sp^3d^2 to not possess same type of the c) SF_6 and XeF_4	the bond order is increasing in d) CH ₄ d) <i>sp</i> ² hybridisation? d) BCl ₃ and NCl ₃
766. Four diatomic spec them: a) $NO < O_2^- < C_2^{2^-}$ b) $O_2^- < NO < C_2^{2^-}$ c) $C_2^{2^-} < He_2^+ < O_2^-$ d) $He_2^+ < O_2^- < NO$ 767. Which one of the for a) NH_3 768. The hybrid state of a) sp^3d 769. In which of the follow a) CH_4 and H_2O 770. Which is the most of	ties are listed below. Identify $< He_2^+$ $< He_2^+$ < NO $< C_2^{2^-}$ bllowing compounds has bon b) H ₂ S sulphur in SO ₃ molecule is b) sp ³ owing pair both molecules de b) PCl ₅ and SF ₄ covalent?	the correct order in which the correct order in which the correct order in which the d angle as nearly 90°? c) H_2O c) sp^3d^2 to not possess same type of the c) SF_6 and XeF_4	the bond order is increasing in d) CH_4 d) sp^2 hybridisation? d) BCl_3 and NCl_3
766. Four diatomic spec them: a) $NO < O_2^- < C_2^{2^-}$ b) $O_2^- < NO < C_2^{2^-}$ c) $C_2^{2^-} < He_2^+ < O_2^-$ d) $He_2^+ < O_2^- < NO$ 767. Which one of the form a) NH_3 768. The hybrid state of a) sp^3d 769. In which of the following a) CH_4 and H_2O 770. Which is the most of a) $C - F$	ties are listed below. Identify $< He_2^+$ $< He_2^+$ < NO $< C_2^{2-}$ b) H ₂ S sulphur in SO ₃ molecule is b) sp ³ owing pair both molecules do b) PCl ₅ and SF ₄ covalent? b) C - O	the correct order in which the correct order in which the correct order in which the damage as nearly 90°? c) H_2O c) sp^3d^2 to not possess same type of here correct of the corr	the bond order is increasing in d) CH_4 d) sp^2 hybridisation? d) BCl_3 and NCl_3 d) $C - Br$
766. Four diatomic spec them: a) $NO < O_2^- < C_2^{2^-}$ b) $O_2^- < NO < C_2^{2^-}$ c) $C_2^{2^-} < He_2^+ < O_2^-$ d) $He_2^+ < O_2^- < NO$ 767. Which one of the for a) NH_3 768. The hybrid state of a) sp^3d 769. In which of the following a) CH_4 and H_2O 770. Which is the most of a) $C - F$ 771. The shape of NO_3^- i	ties are listed below. Identify $< He_2^+$ $< He_2^+$ < NO $< C_2^{2^-}$ b) G compounds has bon b) H ₂ S sulphur in SO ₃ molecule is b) sp ³ towing pair both molecules do b) PCl ₅ and SF ₄ covalent? b) C - O s planar. It is formed by the component of the second	the correct order in which to d angle as nearly 90°? c) H_2O c) sp^3d^2 o not possess same type of h c) SF_6 and XeF_4 c) $C - S$ overlapping of oxygen orbita	the bond order is increasing in d) CH_4 d) sp^2 hybridisation? d) BCl_3 and NCl_3 d) $C - Br$ als with orbitals of nitrogen.
766. Four diatomic spec them: a) $NO < O_2^- < C_2^{2^-}$ b) $O_2^- < NO < C_2^{2^-}$ c) $C_2^{2^-} < He_2^+ < O_2^-$ d) $He_2^+ < O_2^- < NO$ 767. Which one of the form a) NH_3 768. The hybrid state of a) sp^3d 769. In which of the follow a) CH_4 and H_2O 770. Which is the most of a) $C - F$ 771. The shape of NO_3^- i a) sp^3 -hybridized	ties are listed below. Identify $< He_2^+$ $< He_2^+$ < NO $< C_2^{2^-}$ b) H ₂ S sulphur in SO ₃ molecule is b) sp ³ owing pair both molecules do b) PCl ₅ and SF ₄ covalent? b) C - O s planar. It is formed by the o b) sp ² -hybridized	the correct order in which the correct order of the correct order of the correct order of the correct order of the correct order or correct order order order or correct order orde	the bond order is increasing in d) CH_4 d) sp^2 hybridisation? d) BCl_3 and NCl_3 d) $C - Br$ als with orbitals of nitrogen. d) None of these
766. Four diatomic spec them: a) $NO < O_2^- < C_2^{2^-}$ b) $O_2^- < NO < C_2^{2^-}$ c) $C_2^{2^-} < He_2^+ < O_2^-$ d) $He_2^+ < O_2^- < NO$ 767. Which one of the form a) NH_3 768. The hybrid state of a) sp^3d 769. In which of the follow a) CH_4 and H_2O 770. Which is the most of a) $C - F$ 771. The shape of NO_3^- i a) sp^3 -hybridized 772. Which of the ions h	ties are listed below. Identify $< He_2^+$ $< He_2^+$ < NO $< C_2^{2-}$ bllowing compounds has bon b) H ₂ S sulphur in SO ₃ molecule is b) sp ³ owing pair both molecules do b) PCl ₅ and SF ₄ covalent? b) C - O s planar. It is formed by the o b) sp ² -hybridized tass the largest ionic radius?	the correct order in which the correct order in which the correct order in which the damage of the correct order in which the damage of the correct order order or the correct order or the correct order orde	the bond order is increasing in d) CH_4 d) sp^2 hybridisation? d) BCl_3 and NCl_3 d) $C - Br$ als with orbitals of nitrogen. d) None of these
766. Four diatomic spect them: a) $NO < O_2^- < C_2^{2^-}$ b) $O_2^- < NO < C_2^{2^-}$ c) $C_2^{2^-} < He_2^+ < O_2^-$ d) $He_2^+ < O_2^- < NO$ 767. Which one of the for a) NH_3 768. The hybrid state of a) sp^3d 769. In which of the follo a) CH_4 and H_2O 770. Which is the most of a) $C - F$ 771. The shape of NO_3^- i a) sp^3 -hybridized 772. Which of the ions h a) Be^{2^+}	ties are listed below. Identify $< He_2^+$ $< He_2^+$ < NO $< C_2^{2^-}$ ollowing compounds has bon b) H ₂ S sulphur in SO ₃ molecule is b) sp ³ owing pair both molecules do b) PCl ₅ and SF ₄ covalent? b) C - O s planar. It is formed by the o b) sp ² -hybridized tas the largest ionic radius? b) Mg ²⁺	the correct order in which the correct order in the correct order of the correct order of the correct order of the correct order or correct order	the bond order is increasing in d) CH_4 d) sp^2 hybridisation? d) BCl_3 and NCl_3 d) $C - Br$ als with orbitals of nitrogen. d) None of these d) Sr^{2+}
766. Four diatomic spect them: a) $NO < O_2^- < C_2^{2^-}$ b) $O_2^- < NO < C_2^{2^-}$ c) $C_2^{2^-} < He_2^+ < O_2^-$ d) $He_2^+ < O_2^- < NO$ 767. Which one of the for a) NH_3 768. The hybrid state of a) sp^3d 769. In which of the follo a) CH_4 and H_2O 770. Which is the most of a) $C - F$ 771. The shape of NO_3^- i a) sp^3 -hybridized 772. Which of the ions h a) Be^{2^+} 773. A σ -bonded molecu	ties are listed below. Identify $< He_2^+$ $< He_2^+$ < NO $< C_2^{2-}$ bllowing compounds has bon b) H ₂ S sulphur in SO ₃ molecule is b) sp ³ owing pair both molecules de b) PCl ₅ and SF ₄ covalent? b) C - O s planar. It is formed by the of b) sp ² -hybridized the largest ionic radius? b) Mg ²⁺ ale MX ₃ is T-shaped. The number $> S = 10^{-10}$	the correct order in which the correct order in the correct order of the correct order of the correct order of the correct order or	the bond order is increasing in d) CH_4 d) sp^2 hybridisation? d) BCl_3 and NCl_3 d) $C - Br$ als with orbitals of nitrogen. d) None of these d) Sr^{2+} electron is
766. Four diatomic spect them: a) $NO < O_2^- < C_2^{2^-}$ b) $O_2^- < NO < C_2^{2^-}$ c) $C_2^{2^-} < He_2^+ < O_2^-$ d) $He_2^+ < O_2^- < NO$ 767. Which one of the for a) NH_3 768. The hybrid state of a) sp^3d 769. In which of the follo a) CH_4 and H_2O 770. Which is the most of a) $C - F$ 771. The shape of NO_3^- i a) sp^3 -hybridized 772. Which of the ions h a) Be^{2+} 773. A σ -bonded molecu a) O	ties are listed below. Identify $< He_2^+$ $< He_2^+$ $< Re_2^+$ < NO $< C_2^{2-}$ b) C_2^{2-} b) H_2S sulphur in SO ₃ molecule is b) Sp^3 owing pair both molecules do b) PCl ₅ and SF ₄ covalent? b) $C - O$ s planar. It is formed by the of b) Sp^2 -hybridized has the largest ionic radius? b) Mg^{2+} alle MX_3 is T-shaped. The number Mg^2	the correct order in which the correct order in the correct order of the correct order of the correct order of the correct order of the correct order or correct order or correct order or correct order or	the bond order is increasing in d) CH_4 d) sp^2 hybridisation? d) BCl_3 and NCl_3 d) $C - Br$ als with orbitals of nitrogen. d) None of these d) Sr^{2+} electron is
766. Four diatomic spect them: a) $NO < O_2^- < C_2^{2^-}$ b) $O_2^- < NO < C_2^{2^-}$ c) $C_2^{2^-} < He_2^+ < O_2^-$ d) $He_2^+ < O_2^- < NO$ 767. Which one of the for a) NH_3 768. The hybrid state of a) sp^3d 769. In which of the follow a) CH_4 and H_2O 770. Which is the most of a) $C - F$ 771. The shape of NO_3^- i a) sp^3 -hybridized 772. Which of the ions h a) Be^{2+} 773. A σ -bonded molecular	ties are listed below. Identify $< He_2^+$ $< He_2^+$ $< He_2^+$ < NO $< C_2^{2^-}$ b)lowing compounds has bon b) H ₂ S sulphur in SO ₃ molecule is b) sp ³ owing pair both molecules de b) PCl ₅ and SF ₄ covalent? b) C - O s planar. It is formed by the of b) sp ² -hybridized tas the largest ionic radius? b) Mg ²⁺ tale MX ₃ is T-shaped. The number $= MX_3 = 0$	the correct order in which the correct order of H_2O c) SP^3d^2 or not possess same type of the correct order of F_6 and XeF_4 c) $C - S$ coverlapping of oxygen orbitations of correct order order or correct order order or correct order order or correct order or correct or correct order or	the bond order is increasing in d) CH_4 d) sp^2 hybridisation? d) BCl_3 and NCl_3 d) $C - Br$ als with orbitals of nitrogen. d) None of these d) Sr^{2+} electron is
766. Four diatomic spect them: a) $NO < O_2^- < C_2^{2^-}$ b) $O_2^- < NO < C_2^{2^-}$ c) $C_2^{2^-} < He_2^+ < O_2^-$ d) $He_2^+ < O_2^- < NO$ 767. Which one of the for a) NH_3 768. The hybrid state of a) sp^3d 769. In which of the follo a) CH_4 and H_2O 770. Which is the most of a) $C - F$ 771. The shape of NO_3^- i a) sp^3 -hybridized 772. Which of the ions h a) Be^{2+} 773. A σ -bonded molecu a) O b) 2 c) 1	ties are listed below. Identify $< He_2^+$ $< He_2^+$ < NO $< C_2^{2-}$ b) on b) H ₂ S sulphur in SO ₃ molecule is b) sp ³ owing pair both molecules do b) PCl ₅ and SF ₄ covalent? b) C - O s planar. It is formed by the of b) sp ² -hybridized has the largest ionic radius? b) Mg ²⁺ ale MX ₃ is T-shaped. The number $= MX_3$	the correct order in which the correct order of the correct order or correct order or correct order or correct order or	the bond order is increasing in d) CH_4 d) sp^2 hybridisation? d) BCl_3 and NCl_3 d) $C - Br$ als with orbitals of nitrogen. d) None of these d) Sr^{2+} electron is
766. Four diatomic spect them: a) NO $< O_2^- < C_2^{2^-}$ b) $O_2^- < NO < C_2^{2^-}$ c) $C_2^{2^-} < He_2^+ < O_2^-$ d) He_2^+ $< O_2^- < NO$ 767. Which one of the for a) NH ₃ 768. The hybrid state of a) sp^3d 769. In which of the follo a) CH ₄ and H ₂ O 770. Which is the most of a) C - F 771. The shape of NO ₃ ⁻ i a) sp^3 -hybridized 772. Which of the ions h a) Be ²⁺ 773. A σ -bonded molecu a) O b) 2 c) 1 d) Can be predicted	ties are listed below. Identify $< He_2^+$ $< He_2^+$ < NO $< C_2^{2^-}$ ollowing compounds has bon b) H ₂ S sulphur in SO ₃ molecule is b) sp ³ owing pair both molecules de b) PCl ₅ and SF ₄ covalent? b) C - O s planar. It is formed by the o b) sp ² -hybridized tas the largest ionic radius? b) Mg ²⁺ ale MX ₃ is T-shaped. The number of M	the correct order in which the correct order of the correct order or correct order	the bond order is increasing in d) CH_4 d) sp^2 hybridisation? d) BCl_3 and NCl_3 d) $C - Br$ als with orbitals of nitrogen. d) None of these d) Sr^{2+} electron is
766. Four diatomic spect them: a) $NO < O_2^- < C_2^{2^-}$ b) $O_2^- < NO < C_2^{2^-}$ c) $C_2^{2^-} < He_2^+ < O_2^-$ d) $He_2^+ < O_2^- < NO$ 767. Which one of the for a) NH_3 768. The hybrid state of a) sp^3d 769. In which of the follo a) CH_4 and H_2O 770. Which is the most of a) $C - F$ 771. The shape of NO_3^- i a) sp^3 -hybridized 772. Which of the ions h a) Be^{2+} 773. A σ -bonded molecu a) O b) 2 c) 1 d) Can be predicted 774. Which of the follow	ties are listed below. Identify $< He_2^+$ $< He_2^+$ < NO $< C_2^{2-}$ bllowing compounds has bon b) H ₂ S sulphur in SO ₃ molecule is b) sp ³ owing pair both molecules do b) PCl ₅ and SF ₄ covalent? b) C - O s planar. It is formed by the of b) sp ² -hybridized tas the largest ionic radius? b) Mg ²⁺ alle MX ₃ is T-shaped. The number d only if atomic number of <i>M</i> ying is not isoelectronic?	the correct order in which the correct order is known which the correct order is known which the correct order is the correct order or correct order in the correct order or correct order order or correct order order or correct order orde	the bond order is increasing in d) CH_4 d) sp^2 hybridisation? d) BCl_3 and NCl_3 d) $C - Br$ als with orbitals of nitrogen. d) None of these d) Sr^{2+} electron is

775. In which set of molecules are all the species paramagnetic?				
a) B_2, O_2, N_2	b) B ₂ , O ₂ , NO	c) B_2, F_2, O_2	d) B ₂ , O ₂ , Li ₂	
776. Which of the following l	nas strongest hydrogen bon	ding?		
a) Ethylamine	b) Ammonia	c) Ethyl Alcohol	d) Diethyl ether	
777. The bonds present in N ₂	$_2O_5$ are:			
a) Ionic				
b) Covalent and coordin	ate			
c) Covalent				
d) Ionic and covalent			· ·	
778. The angle between two	covalent bonds is maximum	ı in:		
a) CH4	b) H ₂ O	c) CO ₂	d) SO ₃	
779. The pair having similar	geometry is			
a) PCl ₃ , NH ₄	b) BeCl ₂ , H ₂ O	c) CH ₄ , CCl ₄	d) IF ₅ , PF ₅	
780. In the electronic structu	re of acetic acid there are:			
a) 16 shared and 8 unsh	nared valency electrons			
b) 8 shared and 16 unsh	nared valency electrons		X	
c) 12 shared and 12 uns	shared valency electrons		Y	
d) 18 shared and 6 unsł	nared valency electrons		>	
781. Increasing order (lower	first) of size of the various	hybridised orbitals is:		
a) sp, sp^2, sp^3	b) <i>sp</i> ³ , <i>sp</i> ² , <i>sp</i>	c) sp ² , sp ³ , sp	d) sp^2 , sp , sp^3	
782. Among the following, th	e compound that contains i	onic, covalent and coordina	ite linkage is	
a) NH ₃	b) NH ₄ Cl	c) NaCl	d) CaO	
783. How many bridging oxy	gen atoms are present in P_4	0 ₁₀ ?		
a) 6	b) 4	c) 2	d) 5	
784. Consider the Born-Hab	per cycle for the formation	of an ionic compound gi	ven below and identify the	
compound (<i>Z</i>) formed.				
$M(s) \xrightarrow{\Delta n_1} M(g) \xrightarrow{\Delta n_2} M^+$	(g) ΔH_5			
$\frac{1}{2} X(\alpha) \xrightarrow{\Delta H_3} X(\alpha) \xrightarrow{\Delta H_4} X^{-1}$	$(\sigma) \rightarrow Z$			
a) M^+X^-	b) $M^+X^-(s)$	c) <i>MX</i>	d) $M^+X^-(g)$	
785. The bond length is maxi	imum in:			
a) H_2S	b) HF	c) H_2O	d) Ice	
786. N_2 and U_2 are converted	into monocations, N_2^{+} and O	² respectively. Which of the	e following is wrong?	
a) $\ln N_2$, N – N bond we	eakens	b) In O_2^+ , the $O - O$ bond	order increases	
c) In O_2 , paramagnetism	n decreases	d) N_2^{\prime} become diamagnet	tic	
787. The number of hodal pl	anes present in $\frac{1}{\sigma}$ s-antibon	aing orbitais is	1) J	
$\begin{array}{c} a \\ \hline \end{array}$	DJ Z		a) 3	
788. Which of the following i	has maximum number of for	ie pairs associated with Xe:		
a) XeO_3	$DJ X eF_4$	cj Xer ₆	d) XeF ₂	
789. Which is most volatile c	b ucl	a) UDm		
a) III 700 The calculated hand are	$D \int \Pi G$	СЛПЫ	u) hr	
2) 1	b) 1 5	c) 2	4) 2 5	
$791 \land C = C \text{ bond is:}$	0) 1.3	() 2	u) 2.5	
(7)1. A C = C bolic 13.	nd			
b) Weaker than $C_{-}C$ bo	nd			
c) Longer than $C - C$ be	nd			
d) Shorter than C-C ha	nd			
792. In which of the followin	g nairs hond angle is 109°29	8′ ?		
a) $[NH_{+}^{+}]$ [RF_]	b) [NH ⁺] [RF ₂]	c) [NH ₂] [BF7]	d) [NH ₂], [BF ₂]	
~, [····4])[² ·4]	~, [4], [3]	~, [····3], [···4]	~, [,,,,,,], [,,,,3]	

793. Which of the fo	llowing molecules has three-fol	d axis of symmetry?	
a) NH ₃	b) C ₂ H ₄	c) CO ₂	d) SO ₂
794. In which of the	following arrangements the sec	quence is not strictly acco	ording to the property written
against it?			
a) $HF < HCl <$	HBr < HI : increasing acid stren	ngth	
b) $NH_3 < PH_3$	$< AsH_3 < SbH_3$: increasing bas	ic strength	
c) B < C < 0 <	N : increasing first ionization e	enthalpy	
d) $CO_2 < SiO_2$	$< \text{SnO}_2 < \text{PbO}_2$: increasing oxic	lising power	
795. Which one of th	ne following is paramagnetic?	01	\sim
a) N ₂	b) NO	c) CO	d) 0_2
796. Which of the fo	llowing has largest ionic radius	?	
a) Na ⁺	b) K ⁺	c) Li ⁺	d) Cs ⁺
797. Lattice energy of	of a solid increases if	-)	
a) Size of ions i	s small	b) Charges of ions	s are small
c) Ions are neu	tral	d) None of the ab	ove
798. Which one is m	ost polar?	.,	
a) CCl₄	b) CHCl ₂	c) CH ₂ Cl	d) CH ₂ OH
799. The high boiling	g point of water is due to:	-)3	
a) Weak dissoc	iation of water molecules		
b) Hydrogen bo	onding among water molecules		
c) Its high spec	ific heat		
d) Its high diele	ectric constant		
800. The states of hy	vbridisation of boron and oxyge	n atoms in boric acid (H	$_{2}BO_{2}$) are respectively
a) sp^2 and sp^2	b) sp^2 and sp^3	c) sp^3 and sp^2	d) sn^3 and sn^3
801. In which pair of	f species, both species do have t	he similar geometry?	
a) $CO_2 SO_2$	b) NH ₂ , BH ₂	() $(\Omega_2^{2-} S \Omega_2^{2-})$	d) SO_{2}^{2-} ClO ₇
802 Which of the fo	llowing is largest ion?		4,004
a) Na ⁺	h) Mg ²⁺	2 c) 0^{2-}	d) F-
803. The electronic	configuration of sodium and chl	orine justifies:	
a) Their physic	al state		
b) Their reactiv	vity		
c) The formation	on of electrovalent compound N	aCl	
d) None of the a	above		
$804. sp^3$ hybridisati	on is found in		
a) ⁺ _C u	b) • C H	c) ClO_{2}^{-}	d) SO_2
	······································	-) 3	
805. Glycerol is mor	e viscous than ethanol due to		
a) High molecu	lar weight	b) High boiling po	bint
c) Many hydrog	gen bonds per molecule	d) Fajan's rule	
806. In the case of al	Ikali metals, the covalent charac	ter decreases in the orde	er:
a) MI > MBr >	MCI > MF		
b) MCI > MI >	MBr > MF		
c) MF > MCl >	MBr > MI		
d) MF $>$ MCl $>$	MI > MBr		
807. Two nodal plan	les are present in		
a) $\pi^{*}_{2}p_{x}$	b) σ2 <i>p_z</i>	c) π2 <i>p_x</i>	d) $\pi 2p_y$
808. H – bond is not	present in		
a) Water		b) Glycerol	
c) Hydrogen flu	ıoride	d) Hydrogen sulp	hide
809. In which of the	following pairs molecules have	bond order three and ar	e isoelectronic?

a) CN⁻, CO	b) CO, O ₂ +	c) NO ⁺ , CO ⁺	d) CN^{-}, O_{2}^{+}
810. Which of the followi	ng halides has maximum melt	ing point?	-
a) NaF	b) NaCl	c) NaBr	d) NaI
811. Which atomic orbita	l is always involved in sigma b	onding only?	-
a) <i>s</i>	b) <i>p</i>	c) d	d) <i>f</i>
812. Which of the followi	ng acts sometimes as a metal a	and sometimes as a non-me	tal?
a) Hg	b) Cl	c) K	d) At
813. Amongst the followi	ng elements the configuration	having the highest ionization	on energy is:
a) [Ne] $3s^23p^1$	b) [Ne] $3s^2 3v^3$	c) [Ne] $3s^2 3p^2$	d) $[Ar]3d^{10}4s^24p^3$
814. Which of the followi	ng species exhibits the diamag	metic behaviour ?	
a) 0^{2-}_{2}	b) 0 ⁺	c) 0 ₂	d) NO
815. Which is a good solv	ent for ionic and polar covaler	nt compounds?	
a) H ₂ O	b) CH ₂ COOH	c) CCl	d) Liquid NH ₂
816. The following salt sh	lows maximum covalent chara	icter	.,
a) AlCl _a	h) MgCla	c) (s()	d) LaCla
817 Fach of the following	s has non-zero dinole momer	it excent.	u) hadis
a) C.H.	b) CO		d) NH-
818 Bonded electron nai	rs present in octahedral SF. m		
a) 3	b) 4	c) 6	d) 5
aj 5 810 Reconance structure	b) T		u) 5
2 1 β . Resolutine sulucities	b) NH		<u>ч)</u> н 0
$a_{\rm J}$ U_3 920 Born Habor cyclom	b_{1} h_{13}		u) 11 ₂ 0
a) Electronegativity	b) Mass number	c) Ovidation number	d) Electron affinity
821 The electronic struct	b) Mass number $A B C D$		u) Electron annity
$(A)1a^2$ (P)	$1c^2 2c^2 2m^2$	are	
(A)1S (B)	15, 25, 2p		
$(U)1S^2, 2S^2, 2p^3$ (D) The ten dense to form	$(1s^2, 2s^2, 2p^3)$		
I ne tendency to form	n electrovalent bond is largest	in	
$a_{J}A$		CJL	d) <i>D</i>
822. In which element sh	leiding effect is not possible?		
a) H	b) Be	c) B	d) N
823. The hybridisation of	orbitals of N atom in NO_3^- , NO	$\frac{1}{2}$ and NH_4^+ are respectively	7:
a) sp, sp^2, sp^3	b) sp^2 , sp , sp^3	c) sp, sp^3, sp^2	d) <i>sp²</i> , <i>sp³</i> , <i>sp</i>
824. Which of the followi	ng is isoelectronic with carbon	n atom?	
a) Na+	b) Al^{3+}	c) 0^{2-}	d) N+
825. Which of the followi	ng statement is correct?		
a) Polarization of an	anion is maximum by high ch	arged cation	
b) Small sized cation	minimises the polarization		
c) A small anion brin	ngs about a large degree of pol	arisation	
d) A small anion und	lergoes a high degree of polari	zation	
826. Among LiCl, BeCl ₂ , B	Cl_3 and CCl_4 , the covalent bon	d character follows the ord	er:
a) LiCl > $BeCl_2 > Bc$	$Cl_3 > CCl_4$		
b) LiCl $<$ BeCl ₂ $<$ BC	$Cl_3 < CCl_4$		
c) LiCl > $BeCl_2 > CC$	$Cl_4 > BCl_3$		
d) LiCl $<$ BeCl ₂ $<$ BC	$Cl_3 > CCl_4$		
827. The value of bond or	der in nitrogen and oxygen m	olecule is:	
a) 3, 2	b) 4, 2	c) 2, 3	d) 1, 2
828. Pauling received No	bel Prize for his work on:		
a) Photosynthesis	b) Atomic structure	c) Chemical bonding	d) Thermodynamics
829. With which of the gi	ven pairs CO ₂ resembles?		
a) $HgCl_2, C_2H_2$	b) C ₂ H ₂ , NO ₂	c) HgCl ₂ , SnCl ₄	d) N_2O, NO_2

830. The enhanced force of cohesion in metals is due to: a) The covalent linkages between atoms b) The electrovalent linkages between atoms c) The lack of exchange of valency electrons d) The exchange energy of mobile electrons 831. Among HX, the maximum dipole moment is of: d) HI a) HF b) HCl c) HBr 832. Dative bond is present in: b) NH_3 c) $BaCl_2$ d) BF_3 a) SO_3 833. In which of the following molecule, the central atom does not have sp^3 -hybridization? a) CH4 b) SF_4 c) BF₄ d) NH_{4}^{+} 834. Which has an odd electron and shows paramagnetic character? b) SO_2 d) H_2O a) NO c) CO₂ 835. Which ion is not isoelectronic with 0^{2-2} ? a) N³⁻ b) Na⁺ c) F⁻ 836. Which species is paramagnetic? d) N0⁺ a) 0_{2}^{-} b) $CH_3^$ c) CO 837. Structure of ammonia is a) Pyramidal b) Tetrahedral c) Trigonal d) Trigonal pyramidal 838. The example of the *p*-*p*-orbital overlapping is the formation of: a) H₂ molecule b) Cl₂ molecule c) Hydrogen chloride d) Hydrogen bromide molecule 839. In which of the following $p\pi - d\pi$ bonding is observed c) BO₃³⁻ b) SO_3^{2-} d) CO_3^{2-} a) NO_3^- 840. The shape of ClO_4^- ion is: b) Square pyramidal c) Tetrahedral d) Trigonal bipyramidal a) Square planar 841. The critical temperature of water is higher than that of O_2 because H_2O molecule has: a) Fewer electrons than 0_2 b) Two covalent bonds c) V-shape d) Dipole moment 842. Compound formed by sp^3d -hybridization will have structure: a) Trigonal bipyramidal b) T-shaped c) Linear d) Either of these depending on number of lone pair of electrons of central atom 843. Which has the lowest bond angle? a) NH₃ c) H₃0⁺ b) BeF_2 d) CH₄ 844. Assuming that Hund's rule is violated, the bond order and magnetic nature of the diatomic molecule B₂ is a) 1 and diamagnetic b) 0 and diamagnetic c) 1 and paramagnetic d) 0 and paramagnetic 845. The energy of antibonding molecular orbitals is: a) Greater than the bonding M.O. b) Smaller than the bonding M.O. c) Equal to that of bonding M.O. d) None of the above

846. The set representing the correct order of ionic radius is: a) $Na^+ > Li^+ > Mg^{2+} > Be^{2+}$ b) $Li^+ > Na^+ > Mg^{2+} > Be^{2+}$ c) $Mg^{2+} > Be^{2+} > Li^+ > Na^+$ d) $Li^+ > Be^{2+} > Na^+ > Mg^{2+}$ 847. Which of the following hydrogen bonds is the strongest? a) O——H-----N b) F——H-----F c) O—H-----O d) 0— —H----F 848. H₂O is dipolar, whereas BeF₂ is not. It is because a) The electronegativity of F is greater than that of O b) H₂O involves hydrogen bonding whereas BeF₂ is a discrete molecule c) H₂O is linear and BeF₂ is angular d) H₂O is angular and BeF₂ is linear 849. Which of the following statements is most correct? Effective nuclear charge of an atom depends on: a) The atomic number of the atom b) The charge on the ion c) The shielding effect d) Both the actual nuclear charge and the shielding effect 850. The total number of valency electrons in PH_4^+ ion is: a) 8 d) 14 b) 9 c) 6 851. Phosphoric acid is syrupy in nature due to b) Hydrogen bonding a) Strong covalent bonding d) None of the above c) van der Waals' forces 852. The correct order of bond angles is: a) $H_2S < NH_3 < BF_3 < SiH_4$ b) $NH_3 < H_2S < SiH_4 < BF_3$ c) $H_2S < NH_3 < SiH_4 < BF_3$ d) $H_2S < SiH_4 < NH_3 < BF_3$ 853. Metallic lusture is explained by a) Diffusion of metal ions b) Oscillation of loose electrons c) Excitation of free protons d) Existence of bcc lattice 854. Which of the following phenomenon will occur when two atoms of same spin will react? a) Bonding will not occur b) Orbital overlap will not occur c) Both (a) and (b) d) None of the above 855. The hybrid state of S in SO_3 is similar to that of b) C in C₂H₄ a) C in C_2H_2 c) C in CH_4 d) C in CO_2 856. Among the following the pair in which the two species are not isostructural is a) 10_3^- and $XeO_3^$ b) PF_6^- and SF_6 c) BH_4^- and NH_4^+ d) SiF₄ and SF₄ 857. Which of the following species contains three bond pairs and one lone pair around the central atom? a) $NH_2^$ b) PCl_3 c) H_20 d) BF_3 858. Intramolecular hydrogen bonding is found in: a) Salicyldehyde b) Water d) Phenol c) Acetaldehyde 859. The type of bond formed between H^+ and NH_3 in NH_4^+ ion is: a) Ionic b) Covalent c) Dative d) Hydrogen 860. Which of the following statements is correct about N₂ molecule? a) It has a bond order of 3 b) The number of unpaired electrons present in it is zero and hence, it is diamagnetic The order of filling of MOs is $\pi(2p_x) =$ d) All the above three statements are correct c) $\pi(2p_{\gamma}), \sigma(2p_z)$

	861. Ice has an open structure compared to water due to which it floats on water and occupies a greater volume			
	of space. The open structur	re of ice is due to:		
	a) Solid state of ice	b) Its low density	c) Crystalline nature	d) Hydrogen bonding
	862. Which of the following has	minimum melting point?) .	
	a) CSF	b) HCl	c) HF	d) LiF
	863. Geometry of ammonia mol	ecule and the hybridisation	n of nitrogen involved in it	are
	a) sp^3 hyridisation and tet	rahedral geometry		
	b) sp^3 hyridisation and dis	storted tetrahedral geomet	ry	
	c) <i>sp</i> ² hyridisation and tria	angular geometry		
	d) None of the above			$\langle \rangle$
	864. The molecule having small	est bond angle is		
	a) H_2O	b) H_2S	c) NH ₃	d) H ₂ Te
	865. For a covalent solid, the un	hits which occupy lattice po	oints are:	
	a) Atoms	b) lons	c) Molecules	d) Electrons
	866. Carbon suboxide (C_3O_2) has	as recently been shown as	a component of the atmosp	onere of Venus. Which of
	the following formulation i	raepresents the correct gro	bund state Lewis structure	for carbon suboxide?
	a) :0:C::C:C:0:	b) :0::C::C:C::O:	c) : 0::C::C::C:: 0:	d) :0: C: C: C: 0:
	867. The ionization energy will	be maximum for the proce	ess:	
	a) Ba \rightarrow Ba ²⁺	b) Be \rightarrow Be ²⁺	c) $Cs \rightarrow Cs^+$	d) Li \rightarrow Li ⁺
	868. Born Haber cycle is used to	o determine:		
	a) Lattice energy	b) Electron affinity	c) lonization energy	d) Either of them
	869. In which of the following m	nolecules/ions BF_3 , NO_2^- , N	H_2^- , and H_2^- the central at	om is <i>sp</i> ² hybridized?
	a) BF ₃ and NO ₂	b) NO_2^- and NH_2^-	c) NH_2^- and H_2O	d) NO_2^- and H_2O
	$870. sp^3 d$ hybridisation results	sin		
	a) A square planar molecul	le	b) An octahedron molecul	e
	c) A trigonal bipyramidal r	nolecule	d) A tetrahedron molecule	
	8/1. In the electronic structure	of H_2SO_4 , the total number	r of unshared electrons is	N 0
	a) 20	b) 16	c) 12	d) 8
	872. Which of the following eler	ment has higher ionisation	energy?	
	a) Boron	b) Carbon	c) Oxygen	d) Nitrogen
	873. The bond length of HCl m	solecule is 1.275 A and its	dipole moment is 1.03 D. (10^{-10} esu) is	The ionic character of the
	a) 100	h) 67.3	$(10^{-10} - 630)$ 15	d) 16.83
	874 In a double bond connectir	ng two atoms there is a sha	ring of	uj 10.05
	a) 2 electrons	h) 4 electrons	c) 1 electron	d) All electrons
	875 Number of $P = 0$ honds in F	P_{i}		
	a) 17	h) 16	c) 15	d) 6
	876. Elements whose electrones	gativities are 1.2 and 3.0 fc	orm:	aj o
	a) Ionic bond	h) Covalent hond	c) Coordinate bond	d) Metallic bond
	877. Which of the following is co	orrect?	ej dooramate bona	aj metallie bolla
	a) Decreases in bond lengt	h means increase in bond	strength	
(b) Covalent radius of carbo	on is less than that of nitro	gen	
	c) Single bonds are stronge	er than double bonds	20	
	d) Fe (III) chloride cannot	exist in the dimeric form F	e ₂ Cl _c	
	878. Which of the following is a	favourable factor for catio	in formation?	
	a) Low ionisation potentia	1	b) High electron affinity	
	c) High electronegativity		d) Small atomic size	
	879. A number of ionic compour	nds. e.g., AgCl. CaF ₂ , BaSO4	are insoluble in water. Thi	s is because:
	a) Ionic compounds do not	t dissolve in water		
	b) Water has a high dielect	ric constant		
	.,			

c) Water is not a good ionizing solvent

d) These molecules have exceptionally high attractive forces in their lattice

880. Ionisation potential values of '*d*' block elements as compared to ionisation potential values of '*f*' block elements are:

a) High	er	b) Lower	c) Equal	d) Either of these
881. When a	metal atom com	bines with a non-meta	l atom, the non-metal a	tom will
a) Lose	electrons and de	ecrease in size		
b) Lose	electrons and in	crease in size		
c) Gain	electrons and de	crease in size		
d) Gain	electrons and in	crease in size		\sim
882. The hyd	lration of ionic co	ompounds involves:		
a) Evolu	ution of heat			
b) Weal	kening of attracti	ve forces		
c) Disso	ociation into ions			
d) All of	f the above			
883. Which o	of the following is	s diamagnetic?		
a) H ₂ +		b) 0 ₂	c) Li ₂	d) Fe_2^+
884. Molecu	lar orbital electro	onic configuration for '	X' anion is	
	$(2(\pi^{2}n)^{2})^{2}$	$(\pi^{2}n)^{2}(\pi^{2}n)^{2}(\pi^{2}n)^{1}$		\sim
$KK (\sigma 2)$	s ($\sigma 2s$) ($\sigma 2p_x$)	$(-2p_y)$ $(-2p_z)$ $(-2p_x)$.		
The ani	on ' <i>X</i> ' is			
a) N ₂		b) 0_2^-	c) N_2^2	d) O_2^{2-}
885. Accordi	ng to Fajan's rule	e polarization is more	when:	
a) Smal	l cation and large	e anion		
b) Smal	l cation and smal	ll anion	\mathbf{X}	
c) Larg	e cation and larg	e anion		
d) Larg	e cation and sma	ll anion		
886. Organic	compounds solu	ıble in water contain:		
a) C, H.	Cl	b) C, H	c) C, H, O	d) C, S
887. Atomic	radii of fluorine	and neon in angstrom	unit are respectively gi	ven by:
a) 0.72,	1.60	b) 1.60, 1.60	c) 0.72, 0.72	d) 1.60, 0.72
888. The dec	reasing order of	bond angle is		
a) NO ₂	$> NO_2^+ > NO_2^-$	XY	b) $NO_2^- > NO_2$	$> NO_2^+$
c) NO_2^+	$> NO_2 > NO_2^-$		d) $NO_2^+ > NO_2^-$	> NO ₂
889. The cor	rect order of dip	ole moment is:		
a) CH ₄	$< NF_3 < NH_3 <$	H ₂ 0		
b) NF ₃	$< CH_4 < NH_3 <$	H ₂ 0		
c) NH ₃	$< NF_3 < CH_4 <$	H ₂ 0		
d) H ₂ O	$< NH_3 < NF_3 <$	CH ₄		
890. Which o	oxide of nitrogen	is isoelectronic with (20 ₂ ?	
a) NO ₂		b) N ₂ O	c) NO	d) $N_2 O_2$
891. Which o	of the following n	nolecules does not pos	sess a permanent elect	ric dipole moment?
a) H ₂ S				
b) SO ₂				
c) SO ₃				
d) CS ₂				
892. Among	O, C, F, Cl, Br the	correct order of increa	asing atomic radii is:	
a) F < 0	O < C < Cl < Br	b) F < C < 0 < Br	< Cl c) F $<$ Cl $<$ Br $<$	< 0 < C d) $C < 0 < F < Cl < Br$
893. In whic	h of the following	g diatomic molecules /	ions is the bond order o	of each molecule/ion $= 2.5$?
a) 0 ₂ +, N	10, CN ⁻	b) CN ⁻ , N ₂ ⁺ , N ₂	c) N ₂ ⁺ , NO, O ₂ ⁺	d) O ₂ ⁺ , CN ⁻ , N ₂ ⁺
894. What ty	pe of hybridisati	on takes place in the N	l atom of NH ₃ ?	

a) sp^2 b) sp^3	c) dsp^2	d) <i>sp</i>
895. Identify the correct order of solubility of Na	a ₂ S, CuS and ZnS in aqueous mediu	n:
a) $CuS > ZnS > Na_2S$ b) $ZnS > Na_2S > Na_2$	> CuS c) Na ₂ S > CuS > ZnS	d) $Na_2S > ZnS > CuS$
896. In the following molecule, the two carbon a	atoms marked by asterisk (*) posses	ss the following type of
hybridized orbitals:		
* *		
$H_3C - C \equiv C - CH_3$		
a) sp^3 -orbital b) sp^2 -orbital	c) <i>sp</i> -orbital	d) <i>s</i> -orbital
897. Debye an unit of dipole moment is of the or	rder of:	
a) 10 ⁻¹⁰ esu cm b) 10 ⁻¹⁸ esu cm	c) 10 ⁻⁶ esu cm	d) 10 ⁻¹² esu cm
898. Which of the following is a favourable facto	or for cation formation?	
a) High electronegativity	b) High electron affinity	
c) Low ionisation potential	d) Smaller atomic size	
899. The paramagnetic molecule at ground state	e among the following is	
a) H_2 b) O_2	c) N ₂	d) CO
900. The bond in the formation of fluorine mole	cule will be	\mathbf{v}
a) Due to <i>s</i> – <i>s</i> overlapping	b) Due to <i>s — p</i> overlappi	ng
c) Due to $p - p$ overlapping	d) Due to hybridisation	
901. The diamagnetic molecules are:		
a) B_2, C_2, N_2 b) O_2, N_2, F_2	c) C ₂ , N ₂ , F ₂	d) B_2, O_2, N_2
902. The IP_1 is maximum for:		
a) K b) Na	c) Be	d) He
903. In the transition of Cu to Cu ²⁺ , there is a de	ecrease in:	
a) Atomic number		
b) Atomic mass		
c) Equivalent weight		
d) Number of valency electrons	5	
904. In the following, which bond will be respor	sible for maximum value of hydrog	en bond?
a) N – H b) O – H	c) F – H	d) S — H
905. The bond order of O_2^+ is the same as in		
a) N_2^+ b) CN^-	c) CO	d) NO ⁺
906. Structure of XeF ⁺ ₅ ion is		
a) Trigonal bipyramidal b) Square pyran	nidal c) Octahedral	d) Pentagonal
907. The fHOMO in CO is		
a) π - bonding (b) π -antibondin	g c) σ -antibonding	d) σ - bonding
908. Which of the following has sp^3 -hybridizati	on on central atom?	
a) BF ₂ b) BCl ₃	c) SO ₃	d) CCl ₄
909. Which one has sp^3 hybridisation?		
a) N_20 b) CO_2	c) SO ₂	d) CO
910. Coordinate compounds are formed by:		
a) Transfer of electrons		
b) Sharing of electrons		
c) Donation of electron pair		
d) None of the above		
911. In P ₄ O ₁₀ the		
a) Second bond in P = 0 is formed by $p\pi$ –	- $d\pi$ back bonding	
b) $P = 0$ bond is formed by $p\pi - p\pi$ bonding	ng	
c) $P = 0$ bond is formed by $d\pi - d\pi$ bonding	ng	
d) P = 0 bond is formed by $d\pi - d\pi - 3\sigma$	back bonding	
912. Allene (C_3H_4) contains		

	a) One double bond, one	triple bond and one single	bond	
	b) One triple and two dou	ible bonds		
	c) Two triple and one do	uble bond		
	d) Two double and four s	ingle bond		
913	. Which shows non-directi	onal bonding?		
	a) BCl ₃	b) CsCl	c) NCl ₃	d) BeCl ₃
914	. Which one of the followir	ng contains both ionic and	covalent bonds?	
	a) C ₆ H ₅ Cl	b) H ₂ 0	c) NaOH	d) CO_2
915	$. Na^+, Mg^{2+}, Al^{3+}, Si^{4+}$ are	isoelectronics. Their ionic	size follows the order:	
	a) $Na^+ < Mg^{2+} < Al^{3+} <$	Si ⁴⁺		
	b) $Na^+ > Mg^{2+} < Al^{3+} <$	Si ⁴⁺		
	c) $Na^+ < Mg^{2+} > Al^{3+} >$	Si ⁴⁺		
	d) $Na^+ > Mg^{2+} > Al^{3+} >$	Si ⁴⁺		
916	. Which of the following do	pes not apply to metallic bo	ond?	
	a) Overlapping valence o	rbitals		2
	b) Mobile valence electro	ns	•	X
	c) Delocalized electrons			
	d) Highly directed bonds			7
917	. Van der Waals' forces are	maximum in:		
	a) HBr	b) LiBr	c) LiCl	d) AgBr
918	. The internuclear distance	e in H_2 and Cl_2 molecules a	are 74 and 198 pm respectiv	vely. The bond length of H—
	Cl may be:			
	a) 272 pm	b) 70 pm	c) 136 pm	d) 248 pm
919	. The molecule having zero	o dipole moment is		
	a) CH ₂ Cl ₂	b) BF_3	c) NF ₃	d) ClF ₃
920	. For a stable molecule, the	e value of bond order must	be	
	a) There is no relationshi	p between stability and bo	ond order	
	b) Zero			
	c) Positive			
	d) negative			
921	. Which compound among	the following has more co	valent character?	
	a) AlCl ₃	b) All ₃	c) Mgl ₂	d) Nal
922	. Which among the followi	ng has the largest dipole m	noment?	
	a) NH ₃	b) H ₂ O	c) HI	d) SO ₃
923	. The hybridization of pho	sphorus in POCl ₃ is same a	is in:	
	a) P in PCl ₃	b) S in SF_6	c) Cl in ClF ₃	d) B in BCl ₃
924	. A square planar complex	is formed by hybridisation	n of the following atomic orl	bitals
	a) s, p_x, p_y, p_z	b) s, p_x, p_y, p_z, d	c) d, s, p_x, p_y	d) s, p_x, p_y, p_z, d, d
925	. Which of the following pa	airs are isostructural?		
	a) SO_3^{2-}, NO_3^{-}	b) BF ₃ , NF ₃	c) BrO_3^- , XeO_3	d) SF ₄ , XeF ₄
926	. Among HF, CH ₄ , CH ₃ OH a	and N_2O_4 intermolecular h	ydrogen bond is expected	
	a) In two	b) In all	c) In all leaving one	d) None of these
927	Hydration of different ior	ns in aqueous solution is an	n example of	
	a) Ion – induced dipole in	iteraction		
	b) Dipole - dipole interac	tion		
	c) Dipole – induced dipol	e interaction		
	d) Ion – dipole interaction	n		
928	. Amongst LiCl, RbCl, BeCl ₂	and MgCl ₂ , the compound	is with the greatest and the	least ionic character,
	respectively			
	a) LiCl and RbCl	b) RbCl and MgCl ₂	c) RbCl and BeCl ₂	d) MgCl ₂ and BeCl ₂

929. The percentage of p – character in the orbitals	s forming P – P bonds in P_4 is	
a) 25 b) 33	c) 50	d) 75
930. Atoms or group of atoms which are electricall	y charged are known as:	
a) Anions b) Cations	c) Ions	d) Atoms
931. Which among the following elements has low	est value of ionisation energy?	,
a) Mg b) Ca	c) Ba	d) Sr
932. IP ₂ for an element is invariably higher than IP	because:	-
a) The size of cation is smaller than its atom	-	
b) It is difficult to remove 'e' from cation		\sim
c) Effective nuclear charge is more for cation		\sim
d) All of the above		
933. In forming (i) $N_2 \rightarrow N_2^+$ and (ii) $O_2 \rightarrow O_2^+$; the	ne electrons respectively are re	emoved from
	\ \	
a) $(\pi 2 p_y \text{ or } \pi 2 p_x)$ and $(\pi 2 p_y \text{ or } \pi 2 p_x)$	c)	
1 > (-2) $(-2) > 1 (-2) = -2$	١	
b) $(\pi 2 p_y \text{ or } \pi 2 p_x)$ and $(\pi 2 p_y \text{ or } \pi 2 p_x)$	c)	
(1, 1)		
c) $(\pi 2 p_y \text{ or } \pi 2 p_x)$ and $(\pi 2 p_y \text{ or } \pi 2 p_x)$	()	3
d) $(\frac{1}{2} - \frac{1}{2} - $		
$(\pi 2 p_y \text{ or } \pi 2 p_x)$ and $(\pi 2 p_y \text{ or } \pi 2 p_x)$		-
934. Which one pair of atoms or ions will have sam	ne configuration?	
a) Li ⁺ and He ⁻ b) Cl ⁻ and Ar	c) Na and K	d) F ⁺ and Ne
935. Which combination is best explained by the co	oordinate covalent bond?	
$a = 10^{-1}$		1 1 11 (6
a) $H^2 + H_2 O$ b) $CI + CI$	C) Mg + $\frac{1}{2}O_2$	a) $H_2 + I_2$
936. The dipole moment of $CHCl_3$ is 1.05 debye wh	nile that of CCl ₄ is zero, becaus	e CCl ₄ is:
a) Linear b) Symmetrical 🤇	c) Planar	d) Regular tetrahedral
937. Which shows the highest lattice energy?	7	
a) RbF b) CsF	c) NaF	d) KF
938. In a polar molecule, the ionic charge is 4.8 >	$\times 10^{-10}$ e.s.u. If the inter ioni	c distance is 1 Å unit, then the
dipole moment is		
a) 41.8 debye b) 4.18 debye	c) 4.8 debye	d) 0.48 debye
939. The correct order regarding the electronegati	vity of hybrid orbitals of carbo	on is:
a) $sp < sp^2 > sp^3$ b) $sp < sp^2 < sp^3$	c) $sp > sp^2 < sp^3$	d) $sp > sp^2 > sp^3$
940. Which of the following groups all do not have	$sp^3 d$ hybridisation?	
a) ClF_2 , IF_2 , XeF_2^+ b) ICl_2^- , ClF_2^- , I_2^-	c) ClF_2 , BrF_2 , IF_2	d) PCl ₂ , AsCl ₂ , PF ₅
941. Which of the following compounds does not fo	ollow the octet rule for electro	n distribution?
a) H_2O b) PH_2	c) PCl ₂	d) PCl _r
942. Which of the following sets represents the col	lection of isoelectronic specie	s?
a) Na ⁺ Ma ²⁺ Al ³⁺ Cl ⁻ b) Na ⁺ Ca ²⁺ Sc ³⁺	F^- c) K^+ Cl ⁻ Mg ²⁺ Sc ³⁺	d) K^+ Ca^{2+} Sc^{3+} Cl^-
943 Which of the following has unchanged valence	w?	
a) H b) Na	c) Fe	9) U
944. The structure of XeF. is:	cjic	uj o
a) Planar b) Tetrahedral	c) Square planar	d) Puramidal
0.15 N and O are converted into N ⁺ and O ⁺ rece		uj i yrannuar
Which of the following is not correct?	ecuvely.	
which of the following is not correct: a) In N^+ the N - N band weakens		
a) III N_2 , IIIE $N = N$ DOILU WEAKERS b) In O^+ O = O band order increases		
b) In O_2 , $O = O$ boint of def increases		
c) III O_2 , paramagnetism decreases		
d) N_2 becomes diamagnetic	2	
946. Which molecule has trigonal planar geometry	r?	

a) IF ₃	b) PCl ₃	c) NH ₃	d) BF ₃							
947. Malleability and ductil	ity of metals can be accounted	d due to								
a) The presence of ele	ctrostatic force									
b) The crystalline stru	b) The crystalline structure in metal									
c) The capacity of laye	c) The capacity of layers of metal ions to slide over the other									
d) The interaction of e	lectrons with metal ions in th	e lattice								
948. Underlined carbon is s	vp^3 hybridised in									
a) $CH_2CH = CH_2$	b) CH ₂ CH ₂ NH ₂	c) CH ₂ CONH ₂	4) CH2CH2CN							
949 Hydrogen fluoride is a	liquid unlike other hydrogen	halides because	ay <u>z</u>							
a) HF molecules assoc	iate due to hydrogen honding		\sim							
h) F_{-} is highly reactive										
c) HF is the weakest a	rid of all hydrogen halides									
d) Eluorine atom is the	smallest of all halogens									
950 The number of sigma	(π) and ni (π) covalent honds	respectively in hanzone nit	rile are							
$_{2}$ 5 13	b) 15, 2	c) 12 5	d) 16.2							
aj 5, 15 951 In which one of the fol	b) 13, 5	alent hand takes place?	uj 10, 2							
a) Reiling of H O	b) Molting of KCN	c) Boiling of CE	d) Molting of SiO							
a_1 boining of Π_2 O	b) Mennig of KCN	c) boining of cr ₄	d) Metting of 310_2							
			4) CHCI							
$a_1 CS_2$	$D_{1}C_{2}H_{5}OH$		u) chci ₃							
a) a corbitale	b) n n orbitale	a) a n arbitala	d) a m a arbitala							
a) 5-5 01 Ditais	p p of bitals	c) s-p orbitals	ujs-p-s of bitals							
a) Absolutoly pure wa	ter doos not contain any ion									
a) Absolutely pule wa	nounds may also give ions in	analysis colution								
b) some covarent com		aqueous solution.								
d) Voru moringly colu	only electrovalent compound	u give ions.								
d) very sparingly solu	ble substances do not dissocia	ate in aqueous solution								
955. Formation of π -bond:										
a) increases bond leng										
b) Decreases bond len	gtn									
c) Distorts the geomet										
d) Makes homoatomic	molecules more reactive	· · · · · · · · · · · · · · · · · · ·	30							
956. In which reaction, the	nybridisation on the central a	itom changes from sp^2 to s_1								
a) $NH_3 + H^- \rightarrow NH_4^-$	$b) BF_3 + F \rightarrow BF_4$	$c) H_2 0 + H' \rightarrow H_3 0'$	$d J C_2 H_2 + 2 H_2 \rightarrow C_2 H_6$							
957. The low solubility of B	aSU ₄ in water is due to:									
a) Low dissociation er	lergy									
b) lonic bonds										
c) High value of lattice	energy									
d) None of the above										
958. The number of lone pa	irs of electron on Xe in XeOF ₂	is:								
a) 1	b) 2	c) 3	d) 4							
959. Which compound does	s not contain double bond or	triple bond?								
a) C_2H_4	b) H ₂ O	c) N ₂	d) HCN							
960. The compound showing	ng maximum covalent charact	er is:								
a) BI ₃	b) BCl ₃	c) BF ₃	d) BBr ₃							
961. Carbon atoms in $C_2(C)$	N) ₄ are:									
a) <i>sp</i> -hybridised										
b) <i>sp</i> ² -hybridised										
c) <i>sp</i> - and sp^2 -hybrid	sed									
d) sp, sp ² and sp ³ -hyb	ridised									
962. Which statement is wi	ong?									

		a) 2nd ionisation energy	shows jump in alkali metals	S	
		b) 2nd electron affinity for	or halogens is zero		
		c) Maximum electron affi	nity exists for F		
		d) Maximum ionization en	nergy exists for He		
	963.	Value of <i>x</i> in potash alum	,		
		K_2SO_4 . $AI_r(SO_4)_3$. 24H ₂ O	is		
		a) 4	b) 1	c) 2	d) None of these
	964.	Among the following, the	paramagnetic compound is	5	,
		a) Na ₂ O ₂	b) 0 ₂	c) N_20	d) KO ₂
	965.	. HCl molecule in the vapor	ur state is an example of:	-) <u>2</u> -	
		a) Non-polar bond	b) Ionic bond	c) Polar covalent bond	d) Pure covalent bond
	966.	The electrons in an incom	polete outershell are knowr	i as:	
		a) Kernel electrons	b) Valency electrons	c) Shell electrons	d) None of the above
	967.	According to bond order	concept the correct order o	f stability of 0_2 , 0_2^+ , and 0_2^-	is
		a) $0_2 > 0_2^+ > 0_2^-$	b) $0_2^- > 0_2 > 0_2^+$	c) $0_2 > 0_2^- > 0_2^+$	d) $0^+_2 > 0_2 > 0^2$
	968.	The element which exists	in both hard and soft form	is:	
		a) Fe	b) Si	c) C	d) Al
	969.	Which of the following is	not a correct statement?	Í AN	
		a) Every AB _r molecule do	oes in fact have square pyra	mid structure.	
		b) Multiple bonds are alw	vavs shorter than correspor	nding single bonds.	
		c) The electron-deficient	molecules can act as Lewis	acids.	
		d) The canonical structur	es have no real existence.		
	970.	. The bond strength increa	ses:		
		a) With increasing bond of	order		
		b) With increasing extent	of overlapping of orbitals	$\mathbf{\nabla}$	
		c) With decreasing differ	ence between energies of o	verlapping orbitals	
		d) All of the above		11 0	
	971.	The number of unpaired	electrons in O ₂ molecule is:		
		a) Zero	b) 1	c) 2	d) 3
	972.	Which has higher bond en	nergy and stronger bond?	,	
		a) F ₂	b) Cl_2	c) Br ₂	d) I ₂
	973.	Which of the following sta	atements regarding carbon	monoxide is correct?	
		a) It involves <i>sp</i> -orbitals	of carbon		
		b) It contains a lone pair (only on carbon		
		c) It contains a lone pair (only on oxygen		
		d) In carbonyl, oxygen en	d is attached to the metal a	toms	
	974.	Which of the following is	having highest bond length	?	
		a) NO ⁻	b) NO ⁺	c) CN ⁻	d) CN ⁺
	975.	. Which of the following sta	atement is correct for CsBr	₃ ?	
		a) It is a covalent compou	ınd		
		b) It contains Cs ³⁺ and Br	r [–] ions		
(c) It contains Cs^+ and Br_3^-	ions		
		d) It contains Cs ⁺ , Br ⁻ an	d lattice Br ₂ molecule		
	976.	In 1 – butene number of c	σ - bonds is		
		a) 8	b) 10	c) 11	d) 12
	977.	. Which does not have pyra	amidal geometry?		
		a) SO_3^{2-}	b) NO_3^-	c) NH ₃	d) $C(C_6H_5)_3^-$
	978.	The nature of bonding in	CCl_4 and CaH_2 :		
		a) Electrovalent in both C	Cl_4 and CaH_2		
		b) Covalent in CCl ₄ and el	ectrovalent in CaH ₂		
		-	-		

c) Electrovalent in $\mbox{\rm CCl}_4$ and covalent in $\mbox{\rm CaH}_2$

- d) None of the above
- 979. Which of the following oxides is not expected to react with sodium hydroxide?
 - a) BeO b) B_2O_3 c) CaO d) SiO₂

HURBOLIN SMARLAC

CHEMICAL BONDING AND MOLECULAR STRUCTURE

: ANSWER KEY : 2) 3) 4) d 177) 178) 179) 180) 1) b b b d С a С 5) b 6) b 7) b 8) а 181) b 182) 183) b 184) С С 188) 9) b 10) b 11) С 12) b 185) b 186) d 187) a C d 189) 190) 192) 13) С 14) а 15) а 16) b а 191) b С 193) d 194) 195) 196) 17) b 18) С 19) 20) С С d а а 197) 198) 199) 200) 21) b 22) а 23) С 24) d b d d b 25) 26) d 27) 28) 201) 202) 203) b 🔸 204) С b а С С С 29) 30) 31) 205) d 206) 207) d 208) С а а 32) а а С 211) d 35) 209) d 212) 33) b 34) 36) 210) a а a а С 215) 37) 38) 39) b 40) c 213) b 214) d С 216) С С С b 219) 41) b 42) d 43) b 44) 217) 218) С 220) b С а d 221) 222) 223) 45) 47) b Ċ b 224) b 46) С 48) С а 49) 51) d 225) d 226) 227) 228) 50) С 52) a С а С а 230) 53) 54) 55) 56) 229) b 231) 232) а С С b С a а 57) 59) a 233) d 234) d 235) 236) 58) b С 60) а a С С 238) 237) d 239) 240) 61) 62) 63) 64) С b а а С С 65) 66) 67) 68) 241) С 242) С 243) 244) а а С С a С 69) 71) 245) 246) d 247) 248) 70) а 72) b С С b С а d 249) 250) 73) 74) 75) 76) b 251) d 252) b b С а а 77) 79) d 80) d 253) 254) 255) b 256) 78) a С b а С 81) 82) 83) 84) b 257) b 258) d 259) b 260) С b С С 85) 87) 88) b 261) 262) 263) 264) b 86) b С b b d а 92) 89) d 90) 91) a c 265) b 266) a 267) d 268) d а 93) d 94) d 95) d 96) b 269) b 270) С 271) d 272) b 97) 98) 99) **d** 100) С 273) С 274) d 275) 276) С С а С 103) d 277) 280) 101) С 102) а С 104) С 278) d 279) a С 107) 105) С 106) d а 108) b 281) а 282) d 283) b 284) a 111) 109) а 110) b d 112) а 285) a 286) С 287) a 288) а 113) 114) 115) a 289) b 290) 291) 292) а a С 116) a С b 118) 119) 293) b 294) 295) 296) d 117) а a С 120) С а b 121) 122) b 123) b 124) 297) 298) 299) 300) d а С С С С 126) 127) b 301) d 302) 303) 304) d 125) d С d 128) a С 130) 131) d 129) b 132) d 305) 306) 307) d 308) d b а С 134) d 309) 133) 135) 136) b 310) 311) 312) d С а а С a 137) 138) 139) 140) 313) b 314) 315) 316) а С С С а С b 317) 141) 142) 143) d 144) 318) 319) b 320) d а b а а а 145) 147) 321) b 322) 323) b d 146) 148) b 324) b С а а 149) 150) 151) d 152) а 325) 326) b 327) 328) d С С а a d 329) 153) 155) 330) 331) 332) 154) С d 156) b d d b С d 157) d 158) 159) b 160) 333) 334) b 335) d 336) С С а d 161) d 162) 163) 164) 337) d 338) b 339) b 340) d С a 165) 166) 167) 168) 341) b 342) d 343) 344) С b С С b а 169) 170) d 171) d 172) b 345) b 346) 347) d 348) d С С d 349) b 173) 174) 175) b 176) 350) 351) С 352) b а С а

CHEMISTRY

353)	b	354)	С	355)	b	356) d	557)	С	558)	а	559) b	5 6	0)	С
357)	а	358)	С	359)	d	360) b	561)	С	562)	b	563) d	56	4)	b
361)	С	362)	b	363)	d	364) a	565)	С	566)	d	567) b	5 6	8)	а
365)	а	366)	С	367)	d	368) a	569)	b	570)	С	571) b	o 57	2)	а
369)	d	370)	С	371)	С	372) a	573)	а	574)	b	575) b	o 57	6)	b
373)	а	374)	а	375)	а	376) d	577)	b	578)	b	579) b	5 8	0)	b
377)	а	378)	d	379)	b	380) d	581)	а	582)	d	583) b	5 8	4)	b
381)	а	382)	d	383)	d	384) b	585)	С	586)	С	587) a	58	8)	а
385)	а	386)	a	387)	a	388) a	589)	С	590)	d	591) b) 5 9	2)	b
389)	b	390)	a	391)	с	392) a	593)	С	594)	d	595) a	59	6	с
393)	а	394)	с	395)	с	396) c	597)	С	598)	с	599) b	60	0)	b
397)	b	398)	d	399)	d	400) a	601)	b	602)	с	603) a	60	4)	b
401)	b	402)	b	403)	b	404) c	605)	а	606)	а	607) a	60	8)	а
405)	d	406)	С	407)	b	408) b	609)	d	610)	С	611) c	61	2)	С
409)	b	410)	b	411)	С	412) b	613)	С	614)	b	615) a	61	。 6)	d
413)	c	414)	d	415)	d	416) b	617)	C	618)	c	619) 0	62	0)	b
417)	C	418)	а	419)	С	420) b	621)	d	622)	a	623) h	62	4)	c
421)	d	422)	C	423)	d	424) c	625)	d	6261	d	627) b	62	- <i>)</i> 8)	a
425)	а	426)	C	427)	С	428) b	629)	a	630)	h	631) a	63	2)	C
429)	b	430)	C	431)	d	432) a	633)	b	634)	- a	635) c	63	-, 6)	d
433)	d	434)	c	435)	d	436) b	637)	a	638)	c	639) d	64	0)	b
437)	b	438)	C	439)	b	440) b	641)	c	642)	b	643) a	64	4)	a
441)	b	442)	С	443)	a	444) b	645)	a	646)	b	647) c	64	-) 8)	d
445)	a	446)	С	447)	С	448) a	649)	а	650)	b	651) a	65	2)	c
449)	b	450)	С	451)	a	452) b	653)	a	654)	b	655) c	65	-, 6)	b
453)	d	454)	a	455)	d	456) b	657)	C	658)	d	659) d	66	0)	c
457)	c	458)	b	459)	d	460) d	661)	c	662)	а	663) a	66	。) 4)	b
461)	b	462)	a	463)	С	464) c	665)	a	666)	b	667) b	66	- <i>)</i> 8)	ď
465)	a	466)	d	467)	d	468) a	669)	d	670)	c	671) b	67	2)	d
469)	d	470)	d	471)	d	472) a	673)	b	674)	b	675) c	67	-, 6)	d
473)	b	474)	b	475)	C	476) a	677)	b	678)	d	679) o	68	0)	d
477)	d	478)	c	479)	a	480) d	681)	a	682)	a	683) d	68	3) 4)	c
481)	b	482)	C	483)	d	484) b	685)	c	686)	С	687) d	68	-) 8)	a
485)	c	486)	b	487)	b	488) a	689)	b	690)	С	691) b	69	2)	b
489)	c	490)	b	491)	d	492) a	693)	d	694)	b	695) a	69	-, 6)	b
493)	С	494)	b	495)	С	496) b	697)	a	698)	c	699) a	70	0)	d
497)	С	498)	b	499)	с	500) d	701)	b	702)	b	703) a	70	4)	d
501)	d	502)	b	503)	b	504) b	705)	b	706)	b	707) b	70	-) 8)	b
505)	C	506)	b	507)	С	508) c	709)	С	710)	С	711) d	1 71	2)	a
509)	с	510)	b	511)	d	512) a	713)	b	714)	С	715) c	71) 6)	a
513)	b	514)	d	515)	d	516) b	717)	d	, 718)	a	719) d	72	0)	d
517)	a	518)	d	519)	a	520) c	721)	a	722)	a	723) a	72	4)	b
521)	a	522)	С	523)	a	524) b	725)	d	, 726)	d	727) d	72	8)	d
525)	d	526)	a	527)	d	528) a	729)	c	730)	b	731) c	73	2)	c
529)	d	530)	а	531)	b	532) a	733)	b	734)	С	735) b	73	。 6)	d
533)	b	534)	С	535)	c	536) d	7371	b	738)	c	739) h) 74	0)	С
537)	a	538)	b	539)	a	540) c	741)	b	742)	a	743)	. 74	4)	b
541)	а	542)	С	543)	b	544) a	745)	a	746)	a	747) a	74	, 8)	b
545)	b	546)	b	547)	С	548) d	7491	b	750)	d	751) a	75	2)	a
549)	c	550)	С	551)	d	552) c	7531	b	754)	С	755) 0	. 75	, 6)	b
553)	b	554)	a	555)	b	556) a	757	h	758)	c	759) a	76	0)	b
2007		,			2	, u	1.2.7			-	, u		·)	

761)	b	762)	а	763)	b	764)	а	873)	d	874)	b	875)	b	876)	а
765)	d	766)	d	767)	b	768)	d	877)	a	878)	a	879)	d	880)	a
769)	d	770)	С	771)	b	772)	d	881)	d	882)	d	883)	С	884)	а
773)	b	774)	a	775)	b	776)	с	885)	а	886)	С	887)	а	888)	С
777)	b	778)	с	779)	С	780)	а	889)	а	890)	b	891)	d	892)	а
781)	а	782)	b	783)	а	784)	b	893)	с	894)	b	895)	d	896)	С
785)	а	786)	d	787)	а	788)	d	897)	b	898)	С	899)	b	900)	С
789)	b	790)	b	791)	d	792)	а	901)	с	902)	d	903)	d	904)	С
793)	а	794)	b	795)	b	796)	d	905)	а	906)	b	907)	d	908)	d
797)	а	798)	d	799)	b	800)	b	909)	с	910)	С	911)	а	912)	d
801)	d	802)	С	803)	С	804)	b	913)	b	914)	С	915)	d	916)	d
805)	С	806)	а	807)	а	808)	d	917)	d	918)	С	919)	b	920)	С
809)	а	810)	а	811)	а	812)	d	921)	b	922)	b	923)	а	924)	С
813)	b	814)	а	815)	а	816)	а	925)	с	926)	а	927)	d	928)	С
817)	а	818)	с	819)	а	820)	d	929)	d	930)	С	931)	c	932)	d
821)	С	822)	а	823)	b	824)	d	933)	С	934)	b	935)	а	936)	d
825)	а	826)	b	827)	а	828)	с	937)	с	938)	C	939)	d	940)	d
829)	а	830)	d	831)	а	832)	а	941)	d	942)	d	943)	b	944)	С
833)	b	834)	а	835)	d	836)	а	945)	d	946)	d	947)	С	948)	b
837)	а	838)	b	839)	b	840)	с	949)	а	950)	с	951)	d	952)	b
841)	d	842)	d	843)	а	844)	а	953)	b	954)	b	955)	b	956)	b
845)	а	846)	а	847)	b	848)	d	957)	c	958)	а	959)	b	960)	С
849)	d	850)	а	851)	b	852)	С	961)	С	962)	С	963)	С	964)	d
853)	b	854)	С	855)	b	856)	d	965)	С	966)	b	967)	d	968)	С
857)	b	858)	а	859)	С	860)	d	969)	а	970)	d	971)	С	972)	b
861)	d	862)	b	863)	b	864)	d	973)	а	974)	а	975)	С	976)	С
865)	а	866)	С	867)	b	868)	d	977)	b	978)	b	979)	С		
869)	а	870)	С	871)	b	872)	d	-		-		-			
ACHIENE															
5		7													

CHEMICAL BONDING AND MOLECULAR STRUCTURE

CHEMISTRY

 sp^2 hybrid orbital), bond angle is 120° and for 50% s character (as in sp hybrid orbital), bond angle is 180°. Similarly, when the bond angle decreases below 1.9.5°, thes – character will decrease accordingly Decreasing in angle = $120^{\circ} - 109.5^{\circ} = 10.5^{\circ}$ \therefore Decrease in *s*-character = 33.3 - 25 = 8.3Actual decrease in bond angle = $109.5^{\circ} - 105^{\circ} =$ 2 (no.of *d*-orbitals) *d*-character = 4.5° % of 6(total hybridised orbitals : Expected decrease in *s*-character 100 $=\frac{8.3}{10.5} \times 4.5 = 3.56\%$ = 33%So, SF₆ are bond angle = 90° Thus, the *s*-character should decrease by about d-character = 33% and 3.56%, *ie*, *s*-character = 25 - 3.56 = 21.44% 28 (a) 21 **(b)** Head on overlapping give rise to σ -bond B has only six electron in B_2H_6 . formation. 22 (a) 29 (c) Like gets dissolved in like. It is theory. Allene is $CH_2 = C =$ 23 (c) 30 (a) Ionic compounds are good conductor of electricity Silicate ion (Sio_4^{4-}) is the basic structural unit of in molten or in solution state. However, they are silicates. Silicates are metal derivatives of silicic bad-conductor in solid state. acid. 24 (d) 31 (a) In benzene 12σ and 3π bonds are present. The Due to planar equilateral geometry of graphite. structure of benzene is 32 (a) Due to non-availability of *d*-orbitals, boron cannot expand its octet. Therefore, the maximum covalence of boron cannot exceed 4. 33 (b) Cations are always shorter than their parent atom, anion are always larger. 35 (a) H-bonding is weakest bonding. σ 36 (a) 5 of P + 24 of 0 + 3 of -ve charge = 32.25 (c) 37 (c) In CO_3^{2-} ion the C-atom undergoes sp^2 -Benzene has 12σ - and 3π -bonds. hybridisation. It has triangular planar structure. 38 (c) BF_4^- , NH_4^+ and SO_4^{2-} have While tetrahedral PF_5 involves sp^3d -hybridization. structure. 39 **(b)** (d) 26 I_3^- ion is made up of an I_2 molecule with an I^- PCl₅ has trigonal bipyramid geometry. bonded to it by means of a coordinate bond in 27 (b) which I_2 is lone pair acceptor (Lewis acid) and I^- SF₆ has octahedral geometry, sp^3d^2 hybridisation the lone pair donor (Lewis base). There are two and bond angle is 90° bond pairs and three lone pairs in the outer shell of central atom. To minimize the repulsive forces the three lone pairs occupy the equatorial position. The ion is therefore, linear in shape with a bond angle of exactly 180°.

	!		The structure, $\mathrm{CH}_2=\mathrm{C}=\mathrm{CH}_2~$ is non-planar with
	•		two - CH ₂ groups being in planes perpendicular
	•		to each other.
		52	(d)
			Electronegativity increases along the period and
			decreases down the group.
		53	(a)
	••		Brass in an alloy.
	$I_2 + I \longrightarrow [I \longrightarrow I]$	54	(c)
	Lewis Lewis		It is head on overlapping and thus, forms more
	acid base		stronger bond.
	Similarly, N_3^- ion is also linear in shape.	55	(c)
40	(c)		H-bonding in molecule gives rise to increase in its
	According to M.O. theory, bond order of		b.p.
	N_2 , N_2^- and N_2^{2-} are 3, 2.5 and 2 respectively.	56	(b)
41	(b)		One bonding molecular orbital and one
	<i>e</i> .g., BF ₃ .		antibonding.
42	(d)	57	(a)
	Bond order for $H_2^- = +1/2$		Follow Fajans' rule.
43	(b)	58	(b)
	<i>sp</i> -hybridization leads to bond angle of 180°.		Removal of two electrons (one by one) from an
44	(c)		atom requires energy = $IP_1 + IP_2$.
	$\mu H_2 0 \neq 0$, $\mu_{CO_2} = 0$	59	(C)
45	(b)	$\langle \rangle$	The molecular orbital electronic configuration.
	No, of hybrid orbital $=\frac{1}{2}$ [No.of e^- in V-shell of		$(\sigma_{1s})^{2}(\sigma_{1s})^{2}(\sigma_{2s})^{2}(\sigma_{2s})^{2}(\sigma_{2s})^{2}(\sigma_{2p_{x}})^{2}$
	atom + No.of monovalent atoms -charge on		$(\pi 2\pi)^2 (\pi 2\pi)^2 (\pi 2\pi)^2 (\pi 2p_z)^1$
	cation +charge on anion]		$ \begin{array}{c} (n 2 p_y) & (n 2 p_z) \\ \text{Total electrons} = 17 \end{array} $
	No. of hybrid orbital 2 3 4 5		Hence this configuration belongs to $\Omega_{-}^{-}(17e^{-})$
	6 7		ion
	Type of hybridisation sp sp^2 sp^3 sp^3d	60	(a)
	sp^3d^2 sp^3d^3	00	$H_{2}O^{+}: sn^{3}: NO_{2}^{-}: sn^{2}$
	Hybridisation in TeCl ₄ :	61	(a)
	No. of hybrid orbital = $\frac{1}{2}[6 + 4 + 0 + 0] = 5$	01	6.6
	Hence, TeCl, shows sn^3d hybridisation.	62	
46	(a)		More is the dipole moment more is ionic nature.
	The stability and bond angle order for hybrids in a		$\mu = \delta \times d$; higher is μ , more will be δ on the atom.
	group is $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$.	63	(c)
47	(c)		Due to sp^3 -hybridization.
	Isoelectronic species are those species which have	65	(a)
	equal number of electrons. Hence, CO_2 is		Each species has 14 electrons and bond order for
	isoelectronic with $N_2 O$.		each is three.
	Number of electron in $CO_2 = 22$	66	(a)
-	Number of electron in $N_2 O = 22$		Among the given choices of compound having
48	(d)		oxygen attached to hydrogen will have maximum
	In BeCl ₂ , Be atom has incomplete octet.		hydrogen bonding.
49	(a)		\therefore Among CH ₃ OCH ₃ , (CH ₃) ₂ C = 0, CH ₃ CHO and
	Greater the charge, smaller the radius, greater the		C_2H_5OH only C_2H_5OH has oxygen attached to
	polarising power and thus greater the covalent		hydrogen atom.
	nature. This leads to increase in lattice energy.		$\therefore C_2H_5OH$ shows maximum hydrogen bonding.
50	(c)	67	(c)

٠

It is experimental value.

68 **(c)**

 O_2^{2+} has 14 electrons. Its electronic configuration is as

$$O_{2}^{+}: \sigma 1s^{2} {}_{\sigma}^{*} 1s^{2}, \sigma 2s^{2} {}_{\sigma}^{*} 2s^{2}, \pi 2p_{y}^{2} \pi 2p_{z}^{2} \sigma 2p_{x}^{2}$$

Bond order = $\frac{N_{b}-N_{a}}{2} = \frac{10-4}{2} = 3$

69 **(c)**

In diamagnetic molecule, all the electrons are paired

70 (a)

lone pairs

$H \xrightarrow{\sigma} C \xrightarrow{\pi} C \xrightarrow{\sigma} H H$ $H \xrightarrow{\sigma} C \xrightarrow{\pi} C \xrightarrow{\sigma} C \xrightarrow{\sigma} H$ $H \xrightarrow{\sigma} H \xrightarrow{\sigma} H$

Hence, enolic form of acetone contains 9 sigma 81 bonds, 1 pi bond and two lone pairs.

71 **(a)**

In NO_3^- ion, total number of electrons \checkmark 82 7+24+1=32 and in it central atom is sp^2 hybrid. No. of hybrid orbitals $=\frac{V-8B}{2}+B=\frac{24-8\times 3}{2}+3$ $(V \rightarrow \text{total number of electrons in valence shell})$ $B \rightarrow$ probability of formation of bond) In CO_3^{2-} ion, total number of electrons = 6+24+2=32 and in it central atom is sp^2 hybrid. No. of hybrid orbital = $\frac{24-8\times3}{2} + 3 = 3$ 84 Hence, NO_3^- and CO_3^{2-} ions are isoelectronic and isostructural. 72 **(b)** $H_2^+ = \sigma 1 s^2$ (According to molecular orbital 85 theory) Bond order = $\frac{\text{bonding electrons-antibonding electrons}}{\text{bonding electrons}}$ 86 $=\frac{1}{2}=0.5$ 87 H_2^+ is paramagnetic due to the presence of one unpaired electron. 73 (b) H-bonding in molecules gives rise to increase in b.p. 74 (a) Bond distance is in the order : $C - C > C = C > C \equiv C$ $sp^3 > sp^2 > sp$

75 (a) % ionic character = $16(x_A - x_B) + 3.5(x_A - x_B)^2$ = $16 \times 2 + 3.5 \times (2^2)$ = 46

 \therefore The % covalent character = 100 - 46 = 54

76 **(d)**

 ICl_2^- has sp^3d -hybridized state (*i. e.*, trigonal bipyramidal shape but distorted due to the presence of lone pair of electron on I atom.)

77 **(a)**

Like gets dissolved in like.

78 **(c)**

 N_2O is isoelectronic with CO_2 and N_3^- . Hence, its structure is linear. N - N - O

79 **(d)**

H atom attached on N, O, F develops hydrogen bonding molecule.

80 **(d)**

In CCl_4 all bonds of carbon being identical, the molecule is a regular tetrahedron

(c)

In O^{2-} effective nuclear charge is minimum due to more number of electrons and thus the size of O^{2-} is maximum.

(b)

The zero dipole moment of BF_3 molecule is due to its symmetrical (triangular planar) structure.

(b)

Bond dissociation energy order:

$$Cl_2 > Br_2 > F_2 > I_2$$

242.6 192.8 158.8 151.1 in kJ mol⁻¹
(b)

CH₃OH shows H—bonding in liquid state.

They have high electron density.

(c)

A coordinate bond is a dative covalent bond in which two atoms form bond and one of them provides both electrons.

$$X:+Y \longrightarrow X: Y \text{ or } X \longrightarrow Y$$

88 **(b)**

C - C bond length in sp^2 hybrid molecule is= 1.39Å

89 **(d)**

More is electronegativity differences, more is

ionic character.

90 (a) Cation are always smaller than their parent atoms: $\mathrm{Al}^{3+} < \mathrm{Al}^{2+} < \mathrm{Al}^{+} < \mathrm{Al}.$

91 (a)

We know that the C - C bond length = 1.54 A, C =C bond length = 1.34 A and C \equiv C bond length = 1.20 A. Since propyne has triple bond; therefore, it has minimum bond length.

92 (c)

Ionic compounds conduct current in molten state.

93 (d)

Metals are good conductor of electricity because |104 (d) they contain free electrons.

94 (d)

OSF₂ has pyramidal shape

95 (d)

> Non-polar species exert van der Waals' forces among themselves.

96 **(b)**

It has 3σ -and 1π -bond.

97 (C)

 Cl^{-} has $1s^2$, $2s^22p^6$, $3s^23p^6$ configuration.

98 (c)

Per cent ionic character is given by % of ionic character.

 $= 16(X_A - X_B) + 3.5(X_A - X_B)^2$

From the above relation, it is clear that as soon as $(X_A - X_B)$ increases, % ionic character will also increase.

Therefore, curve *C* shows a correct path.

99 (d)

 $7Cl=1s^2, 2s^2, 2p^6, 3s^2, 3p_x^2, 3p_y^2, 3p_z^1$ $Cl=1s^2, 2s^2, 2p^6, 3s^1, 3p_x^1, 3p_y^1, 3p_z^1, 3d^1, 3d^13d^1$ (3rd excited state)

Chlorine atom, in its third excited state, reacts with fluorine to form ClF_7 . Its shape is pentagonal bipyramidal.

100 (c)

Anion (0^{-}) repels the test electron because of same charge.

101 (c)

Cl in ClF₃ has sp^3d -hybridization

and possesses two axial Cl-F bonds and one equatorial bond. Two lone pairs are at equatorial position give rise to bent 'T' shape to ClF₃.

103 (c)

 O_2^- has one unpaired electron in its antibonding molecular orbital.

 $PCl_3 < PBr_3 < PI_3$, the bond angle order is explained in terms of increasing electronegativity of halogens, whereas, $PF_3 > PCl_3$, bond angle order is explained in terms of $p\pi$ - $d\pi$ bonding in PF₃.

105 (c)

 μ experimental = Dipole moment $\times 10^{-18}$ μ theoretical = Bond length $\times 4.8 \times 10^{-10}$ esu × cm

Percentage ionic character = $\frac{\mu_{experimental}}{\mu_{theoretical}} \times 100$

$$=\frac{1.0\times10^{-18}\times100}{1.25\times4.8\times10^{-10}\times10^{-8}}\\=16.66\%$$

106 (d)

CCl₄ does not exhibit dipole moment due to its symmetrical structure.

107 (a)

N₂ molecule has 14 electrons. The molecular orbital electronic configuration of the molecule is as

$$N_{2}: KK (\sigma 2s)^{2} ({}^{*}_{\sigma} 2s)^{2} (\pi 2p_{x})^{2}$$
$$= (\pi 2p_{y})^{2} (\pi 2p_{z})^{2}$$

 N^{-}_{2} ion is formed when N_{2} accept an electron hence it has15 electrons. The molecular orbital electronic configuration of the molecule is as

 $N_2^-: KK (\sigma 2s)^2 ({* \over \sigma} 2s)^2 (\pi 2p_x)^2 (\pi 2p_v)^2$ $(\sigma 2p_z)^2 (\frac{\pi}{\pi} 2p_x)^1$ Hence, this electron goes to antibonding π molecular orbital.

108 (b)

The size of isoelectronic decreases with increase in atomic number.

109 (a)

The bond orders for H_2 , H_2^+ , He_2 and He_2^+ are 1.0, 0.5, 0.0 and 0.5 respectively.

110 **(b)**

N atom has smallest radius.

111 (d)

The order of screening effect for a given shell electrons is s > p > d > f.

112 (a)

The stability of hydrides decreases down the gp, *i.e.*, from NH₃ to BiH₃ which can be observed from their bond dissociation enthalpy. The correct order is

 $NH_3 < PH_3 < AsH_3 < SbH_3 < BiH_3$ Property NH₃ PH₃ AsH $\Delta_{\rm diss} H^{-}(E-H)/{\rm kJ}~{\rm mol}^{-1}$ 297 389 322

113 (a)

SF₄ has sp^3d^2 -hybridization and see-saw geometry.

114 (a)

Due to presence of intermolecular hydrogen bonding in H₂O, its molecules are associated with each other which results unusual high boiling point of water.

115 **(c)**

Larger is anion, more is covalent character.

116 (a)

Molecular orbital configuration of, 0^{2-}_{2-}

 $= \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p^2, \pi 2p_r^2, \pi 2p_v^2, \pi^* 2p$

117 (a)

Valencies of X, Y and Z is +2, +2 and -2respectively so, they will form a compound having of formula XYZ_2 .

118 (a)

The molecule in which the bond dipoles of all the bonds are cancel out by each other, is called non -|120 (c) polar *e.g*., CCl₄.

In CCl₄, there is a large difference between the electronegativities of C and Cl but all the four C -Cl bond dipoles cancel each other , hence it is a non-polar molecule.

119 (c)

Tetrahedral structure is associated with sp^3 hybridised central atom without any lone pair. The structure of all the compounds given are as follows :

Distorted trigonal bipyramidal

Tetrahedral

 SF_4

Methyl group has +I effect and $-NO_2$ group has-I effect. Therefore, in *p*-nitro toluene the dipole moments of - CH₃ and -NO₂ groups act in the same direction. So, the resultant dipole moment is additive. *i.e.*, 3.93+0.43=4.36 debye

Page | 70

N in it has three σ -bonds and one lone pair of electron.

134 (a)

Electron deficient species can accept lone pair of electron and thus, act as Lewis acid.

135 (a)

NH₃ has pyramidal shape and thus, possesses three folds axis of symmetry.

136 (d)

 ICl_2^- has sp^3d -hybridization and has two bond pairs and three lone pairs of electrons.

137 (a)

The dipole moment of a polar molecule depends upon its geometry. A symmetrical molecule is non-polar even though it contain polar bonds. Methane molecule (CH₄) has zero moment value of dipole moment due to its symmetrical structure.

In CHCl₃, the resultant of C – H and C – Cl dipole oppose the resultant of two C - Cl dipoles while in CH_2Cl_2 , the resultant of C – H dipoles adds to resultant of two C – Cl. In case CH₃Cl, the resultant of two C - H dipole adds to the resultant of two C - Cl. In case CH₃Cl the resultant of two C - H dipoles add to the resultant of C - H and C - Cl dipoles.

Thus dipole moment of CH₃Cl is highest among the given compounds. The molecule (CCl₄) again becomes symmetrical and dipole moment reduces

to zero.

138 (c)

139 (c)

Oxygen cannot expand its octet due to absence of *d*-orbitals in its valence shell.

142 (a)

Geometry is explained by taking an account of single bonds only. However, presence of double bond may distort bond angles, e.g., HCHO has sp^2 hybridization but angle H—C—H is 116° and angle H—C—O is 122° due to double bond. In BF₃ $(sp^2$ -hybridization) each angle is of 120°.

143 (d)

The shape of carbon dioxide is linear because it has *sp* hybridisation and bond angle 180°. 0 = C = 0

144 (a)

Addition of electrons to an atom results an increase in its size.

145 (d)

 H_2O is V shaped.

146 (c)

undergoes sp^3 In diethyl ether oxygen hybridisation forming four sp^3 hybrid orbitals.

147 (a)

As soon as the electronegativity increases, ionic bond strength increases

148 (a)

Both are linear.

149 (c)

Inspite of three polar bond, the lone pair of electron on N atom decreases the dipole moment

of NF₃ than NH₃.

150 (c)

Polarity in a molecule gives rise to an increase in forces of attractions among molecules and thus, more becomes boiling point.

152 (a)

The melting point of naphthalene is minimum |167 (c) because it is non - polar covalent compound and has less melting point.

153 (c)

BF₃ is a electron deficient compound. So, it has no lone pair orbital over B atom.

154 (c)

Molecular orbital theory was given by Mulliken.

155 (d)

The trigonal geometry of BF_3 with three vectors $(B \rightarrow F)$ acting at 120° leads to zero dipole moment. In NH₃ three vectors (N \leftarrow H) act as 107° along with one lone pair giving dipole moment in molecule.

156 (d)

Proton (H⁺) can only accept a lone pair from donor atom.

157 (d)

Each has 10 electrons 158 (d)

Isomerism is arised due to directional nature of covalent bonding.

159 **(b)**

 SF_4 has sp^3d -hybridized sulphur atom.

160 (c)

 $SbCl_5^{2-}$ has sp^3d^2 -and rest all has sp^3d hybridisation.

161 (d)

Size of anions is larger than their parent atoms. Also more is ENC lesser is size.

162 (d)

²²Ti:
$$3s^2, 4s^2 \xrightarrow{IE_1} 3d^2, 4s^1$$

²³V: $3d^3, 4s^2 \xrightarrow{IE_1} 3d^3, 4s^1$
²⁴Cr: $3d^5, 4s^1 \xrightarrow{IE_1} 3d^5 \xrightarrow{IE_2 \text{ from}}$ maximum

 $_{25}$ Mn : $3d^5$, $4s^2 \xrightarrow{IE_1} 3d^5$, $4s^1$

164 (a)

C – Cl bond is more ionic than C – I bond because of the greater difference in electronegativities of C and Cl as compared to that of carbon and iodine. Therefore, C – Cl bond is stronger than C – I bond.

165 (c)

Cl is more electronegative than I.

166 (b)

The solubility of a compound depends upon its hydration enthalpy. If hydration enthalpy exceeds the lattice enthalpy than it is soluble in water. For Ag₂SO₄, hydration enthalpy is lower than lattice enthalpy, so it is insoluble in water.

Silicon has the tendency to show covalent bonding because of higher IP values.
168	(c) In Sp(1. Sp has cn^2 hybridization and hance has	181	(b) SoE has distorted tatrahadral geometry while
	angular shape		CH has tetrahedral geometry
169			Sneed of electron \neq sneed of light
109	The inert gas just after chlorine is argon	182	(c)
170	(d)	102	Putadiana is CH = CH = CH = CH
170	The <i>d</i> -orbital involved in sn^3d -hybridization is	102	Butautelle is $CH_2 = CH - CH = CH_2$.
	d	105	(D) 27 is atomic number of Ph the electronositive
	u_{ZX} .		element and 53 is atomic number of iodine (the
171	(d)		electronegative element)
	$Q_2 = \sigma 1 s^2 * 1 s^2 \sigma 2 s^2 * 2 s^2 \sigma 2 n^2 \pi 2 n^2$	184	(c)
	$= \pi 2 p_{2}^{2} \pi^{2} p_{2} u = \pi^{2} p_{3} u$	101	In methane bond angle is 109°28' Methane
	In Ω_{2}^{+} one electron is removed from Na		molecule is tetrahedral in structure.
	BO for $\Omega_2 = 2$ and for $\Omega_2^+ = 2.5$	185	(b)
	Therefore, paramagnetism decreases, BO		Cs is metal and solid.
	increases.	186	(d)
172	(b)		1. Glycerol has strong hydrogen bonding due
	Intramolecular H-bonding is present in ortho		to presence of 3 - OH groups in it. It is
	nitrophenol.		correct statement.
174	(c)		
	According to valence shell electron pair repulsion		2. Alkyl halides have lower boiling point
	(VSEPR) theory, the order of repulsive		than alcohols because alcohols have
	interactions between various electron is		stronger forces of attraction between the
	lp - lp > lp - bp > bp - bp	$\langle \rangle$	nyurogen bonus as compared to weaker
175	(b)		of alley halide
	In like atoms, electronegativity difference is zero.		of arkyl hande.
176	(d)		∴ Statement (d) is false.
	BCl_3 has bond angle equal to 120° (trigonal	105	
	planar). NH_3 and H_2O have sp^3 hybridisation but	187	(a)
	due to the presence of lone pair of electrons, they		Ionic radii= $\frac{n u_0}{Z_{eff}}$
	nave bolic angle less than 109.26 ($NH_3 = 107^\circ H O = 104.5^\circ$) AcH (cm ³ hybrid) has	188	(c)
	107, 1120 = 104.5), ASH ₃ (Sp Hydrid) has		Only those atomic orbitals combine, that have
	electronegativity of As than N		nearly equal energy
177	(d)	189	(b)
	E_{om}° order is Mg > Fe > Cu; more is E_{om}° , more is		The stability of the ionic bond depends upon the
	electronositive character		lattice energy which is expected to be more
178	(c)		between Mg and F due to $+2$ charge on Mg atom
	O atom possesses two lone pair of electrons.	190	(a)
179	(a)	101	Smaller is anion, lesser is its polarization.
	M.O. configuration of O_2^+ is:	191	(0)
C	$\sigma 1s^2 \sigma^* 1s^2, \sigma^* 2s^2 \sigma 2p^2, \pi 2p_v^2 \pi 2p_v^2 \pi^* 2p_x^1$		$\frac{2s}{4}$
	Bond order of $0^+_{12} = \frac{1}{6} [6-1] = \frac{5}{6}$		$B_{(G.S.)}$
	$M \cap configuration of N^+$ is:		
	$\sigma_1 s^2 \sigma^* 1 s^2 \sigma^2 s^2 \sigma^* 2 s^2 \pi^2 n^2 \pi^2 n^2 \sigma^2 n^1$		
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$		sp^2 - hybridisation
	Bond order of $N_2^{-} = \frac{1}{2}[5 - 0] = \frac{1}{2}$		Boron has planar structure due to sp^2
180	(c)		hybridisation.
	No scope for addition in completely filled valence	192	(C)
	orbitals of inert gases.		

 $\sigma 1s^{2}, {}^{*}_{\sigma} 1s^{2}, \sigma 2s^{2}, {}^{*}_{\sigma} 2s^{2}, \sigma 2p_{x}^{2}, \begin{cases} 1 & \sigma \\ \pi 2p_{x}^{2}, \\ \pi 2p_{y}^{2}, \\ \pi 2p_{y}^{2}, \end{cases}$ Bond order = $\frac{\text{bonding electrons-antibonding electrons}}{2}$ $=\frac{10-6}{2}=2$ NO⁺(14). 4. $\sigma 1s^2$, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\sigma 2p_x^2$, $\begin{cases} \pi 2p_y^2 \\ \pi 2p_z^2 \\ \end{cases}$ Bond order = $=\frac{10-4}{2}=3$ 5. NO (15) $\sigma 1s^2, {}^*_{\sigma} 1s^2, \sigma 2s^2, {}^*_{\sigma} 2s^2, \sigma 2p_x^2, {}^{\left\{\begin{array}{c}\pi 2p_y^2\\\pi 2p_z^2,\\\pi 2p_y^2\\\pi 2p_y$ Bond order = $=\frac{10-5}{2}=2.5$ $(iv)NO^{2+}(13).$ $\sigma 1s^2$, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\sigma 2p_x^2$, $\begin{cases} \pi 2p_y^2 \\ \pi 2p_z^2 \end{cases}$ Bond order = $=\frac{9-4}{2}=2.5$ $NO^{2-}(17)$ 6. $\sigma 1s^2, {}^*_{\sigma} 1s^2, \sigma 2s^2, {}^*_{\sigma} 2s^2, \sigma 2p_x^2, {}^*_{\sigma} 2s^2, \sigma 2p_x^2, {}^*_{\sigma} 2s^2_{x}, \sigma 2p_x^2, {}^*_{\sigma} 2s^2_{x}, {}^*_{\sigma} 2s^2_{$ Bond order = $=\frac{10-7}{2} = 1.5$ The order of bond order is $NO^{2-} < NO^{-} < NO^{2+} \approx NO < NO^{+}$ 193 (d) Cl is more electronegative than Br. 194 (c) Boron in $[BF_4]^-$ has regular tetrahedral geometry because of sp^3 -hybridization on boron atom. 195 (d) Usually symmetrical molecules have less dipole moment in comparison to unsymmetrical molecules. NH_2 NO_2 (*m*-nitroaniline) has the Hence. highest dipole moment among the given. 196 (a) Thus, excitation of 2*s*-electron in N is not possible. 197 (b)

PF₅ has sp^3d hybridization (trigonal bipyramid); BrF₅ has sp^3d^2 hybridization (square pyramidal) 198 (d)

In $NH_3 sp^3$ hybridisation is present but its shape becomes pyramidal due to the presence of one lone pair of electron.

199 **(d)**

Higher the lattice energy lower the solubility. Out of the four combinations possible, the lattice energy of MgS (bi-bivalent ionic solid) is higher than those of Na_2S , MgCl₂ (uni-bivalent or biunivalent ionic solids) and NaCl (uni-univalent ionic solids) and hence, MgS is the least soluble.

200 **(b)**

A three electrons in its outermost orbit, its valency is 3. *B* has six electrons in its outermost orbit, its valency is 2

Valency

Formula of the compound = A_2B_3

201 **(c)**

A reason for the given fact.

202 **(c)**

In NH₃, sp^3 -hybridization is present but bond angle is 106°45′ because nitrogen has lone pair of electrons, according to VSEPR theory due to *bp*and *lp* repulsion, bond angle decreases from 109°28′ to 106°45′

203 **(b)**

 ClO_4^- and XeO_3 both contain $3d\pi - p\pi$ bonds

204 **(c)**

Spec	Structure	lp	bp	VSE	Bond
ies				PR	angle

Thus, bond angle $H_2S < NH_3 < SiH_4 < BF_3$. 205 (d)

The pyramidal structure of covalent molecule AB_3 is as :

No. of lone pair = 1No. of bond pair =3

207 (d)

 d^2sp^3 -leads to octahedral geometry. 209 (a)

> A molecule is said to possess a three-fold axis of symmetry if on rotation around this axis through an angle of 360/3, ie, 120°, gives the same arrangement of atoms. Since NH₃ has a pyramidal geometry, therefore, it has a three fold axis of symmetry

210 (a)

Proton number does not change in ion formation, though number of electrons and size change during this.

211 (d)

Valence bond theory (Resonance theory) of 217 (a) metallic bond was given by Pauling (1937). According to this theory, the metallic bonding is essentially covalent in origin and metallic structure exhibits resonance of electro-pair bonds between each atom and its nearest neighbours. In other words, there is a resonance of a large number of canonical forms.

212 (c)

Notice configuration of N^+ , C^+ , O^+ and F^+ .

213 (b)

 ClF_3 has sp^3d hybridisation. Out of five sp^3d hybrid orbitals two are completely filled by *lp* and three are half filled which overlap with three $2p_z$ half filled orbitals of three F-atoms. Due to the presence of two *lps* its geometry is bent *T*-shaped.

214 (d)

These are characteristics of resonance

215 (c)

$$\begin{array}{l}
0_{2}^{2^{-}} : \sigma 1s^{2}, \sigma^{*} 1s^{2}, \sigma 2s^{2} \sigma^{*} 2s^{2} \sigma 2p^{2} \begin{bmatrix} \pi 2p_{y}^{2} \\ \pi 2p_{z}^{2} \end{bmatrix} \pi^{*} 2p_{z}^{2} \\
B.0. = \frac{10 - 8}{2} = 1 \\
B_{2} : \sigma 1s^{2}, \sigma^{*} 1s^{2}, \sigma 2s^{2}, \sigma^{*} 2s^{2} \begin{bmatrix} \pi 2p_{y}^{1} \\ \pi 2p_{z}^{1} \end{bmatrix} \\
B.0. = \frac{6 - 4}{2} = 1
\end{array}$$

216 (c)

In the formation of XeF_6 molecule, three 5 pelectrons are promoted to 5d orbitals. Now, one 5s, three 5p and three 5d-orbitals of Xe atom intermix together and form seven sp^3d^3 hybrid orbitals. One sp^3d^3 hybrid orbital contains one lone pair of electrons while other six are halffilled. The expected geometry is pentagonal bipyramidal.

 sp^2d^3 -hybridisation

Shape : Pentagonal bipyramidal

 $CaC_2 \rightleftharpoons Ca^{2+} + C_2^{2-}$

Carbide ion

In carbide ion, two carbon atoms are joined by triple bond

(If is isoelectronic with N_2)

 $-C \equiv C -$

with two π and one σ -bonds.

218 (b)

 H_20 has sp^3 -hybridization.

219 (c)

e. g., BF₃, a non-polar molecule having sp^2 hybridization.

220 **(b)**

When there is less difference in electronegativities of two atoms (but electronegativities are not same) and large difference in their size, polar covalent bond forms. H and Br : Small difference in electronegativities and large difference in size. Hence, form polar 234 (d) covalent bond.

Na and Br : large difference in electronegativities, hence electrovalent bond is formed.

221 (b)

The bond order for 0_2^{2-} , 0_2^{-} , 0_2^{-} , 0_2^{+} are 1.0, 1.5, 2.0, 2.5 respectively. Higher is bond order, more is bond energy.

222 (c)

In XeF₄, the central atom, Xe, has eight electrons $|237\rangle$ (c) in its outermost shell. Out of these four are used for forming four σ -bonds with F and four remain as lone pairs.

 \therefore XeF₄ \implies 4 σ bonds + 2 lone pairs

 \Rightarrow 6 bybridised orbitals, *i.e.*, sp^3d^2 hybridisation Since, two lone pairs of electrons are present, the geometry of XeF₄ becomes square planar from octahedral.

223 (b)

Bond order = $\frac{1}{2}$ [no. of bonding electrons – no. of antibonding electrons]

224 (c)

H-bonding is noticed in molecules having H atom attached on N, O or F.

225 (d)

F is more electronegative.

226 (a)

S-orbitals always lead head on overlapping.

228 (a)

According to molecular orbital theory , π -bonding orbital are ungerade.

229 (c)

Basic character of hydrides is $NH_3 > PH_3$.

230 (b)

CO₂ has *sp*-hybridization.

231 (a)

Bond angles decrease on moving down the group for similar compounds, *i. e.*, $NH_3 > PH_3 > AsH_3 >$ SbH₃.

232 (a)

Ionic compounds break into their constituent ions when dissolved in water.

Carnallite is double salt having composition,

KCl. MgCl₂. $6H_2O$. It gives K⁺, Cl⁻ and Mg²⁺ ions when dissolved in water.

An increase in s-character give rise to an increase in bond strength.

235 (a)

In rest all dipole-dipole forces also exist.

236 (c)

Among the isoelectronic species smaller is +ve charge, larger is ionic radius, e.g.,

Ionic radius :
$$Na^+ > Mg^{2+} > Al^{3+}$$

1, 4-dihydroxy benzene shows the highest boiling point among given compounds because it forms strong intermolecular hydrogen bonds (It does not form intermolecular H-bonding.)

H-bonding

Order of H-bonding in *o*, *m* and *p*-isomers of a compound is given below

Intermolecular H-bonding, o < m < p-isomers intermolecular H-bonding

o > m > p isomers.

Hydroxy benzene do not form a chain of Hbonding . Hence, intermolecular H-bond is stronger than intermolecular H-bonds, so the stability of 1, 4-dihydroxy benzene is highest. Hence its boiling point is highest. The increasing order of the boiling points of the given compound is

IV < I < II < III

238 (d)

Molecules in *trans*-1, 2-dichloroethene are symmetrical hence, no dipole moment.

239 (b)

 $sp^{3}d^{2}$ -hybridization leads to octahedral geometry.

240 (c)

In BF₃, boron is sp^2 hybridised, so its all atoms are coplanar

241 (c)	Hence, structure of Lip is [Li – Li].
Since, the geometry of AsF_{ϵ} molecule is trigonal	250 (b)
bipyramidal, it is sn^3d hybridised. Thus, s, $n_{\rm ev}$, $n_{\rm ev}$	More directionally concentrated orbitals show
n and d_2 orbitals are utilised by As atom from	more overlapping.
p_z and u_{z^2} orbitals are utilised by As atom from	251 (d)
242 (c)	It is the hybridization of ICl_{2}^{+} .
Molecular orbital configuration of N^+_{τ} is	252 (b)
N^{+} (1.)2(*1.)2(2.)2(*2.)2(2.)2	$n - m - n$ -derivatives has $\alpha = 60^{\circ}$. 120° and 180°
$N_2 = (\sigma_1 s)^2 (\sigma_2 s)^2 (\sigma_2 s)^2 (\pi_2 p_y)$	and thus, resultant vector has zero dipole moment
$= (\pi 2 p_z)^2 (\sigma 2 p_x)^1$	in <i>p</i> -derivative. Also dipole moment of <i>m</i> -
Bond order = $\frac{N_{b} - N_{a}}{2} = \frac{9 - 4}{2} = 2.5$	dichlorobenzene is more than toluene.
243 (a)	253 (a)
Structure of C_2H_2 is linear.	Covalent character α charge of cation
$H - C \equiv C - H$	254 (c)
Structure of CO ₂ is also linear	Carbon cannot accept 6Cl ⁻ , since it has no vacant
0 = C = 0	<i>d</i> -orbitals.
So, both are isostructural species.	255 (b)
244 (c)	Cs^+ is largest cation and F^- is smallest anion.
In <i>o</i> -dichlorobenzene, $\alpha = 60^{\circ}$	256 (b)
$\therefore \cos \alpha = +ve$	Charge of $e^- = 1.6 \times 10^{-19}$
$u = \int u^2 + u^2 + 2u + \cos \alpha$	Dipole moment of HBr = 1.6×10^{-30}
$\mu = \sqrt{\mu_1 + \mu_2 + 2\mu_1\mu_2} \cos \alpha$	Inter-atomic spacing $= 1 \text{ Å}$
245 (c)	$= 1 \times 10^{-10} \mathrm{m}$
Multiplicity of bonds gives higher bond energy.	Percentage of ionic character in HBr
246 (d)	$= \frac{\text{Dipole moment of HBr} \times 100}{\text{Dipole moment of HBr} \times 100}$
Bond order of oxygen molecule $= 2$	inter spacing distance $\times q$
Bond order of oxygen molecule ion $= 2.5$	$=\frac{1.6\times10^{-50}}{1.6\times10^{-19}\times10^{-10}}\times100$
Bond order of superoxide ion $(0_2^-) = 1.5$	$= 10^{-30} \times 10^{29} \times 100$
Bond order of peroxide ion $(0^{2^-}_2) = 1$	$= 10^{-1} \times 100$
Hence, the order of bond strength is as a^{+}	$= 0.1 \times 100$
$0_2^{-} > 0_2^{-} > 0_2^{-} > 0_2^{-}$	= 10%
247 (C)	257 (b)
Electronic configuration of Xe in ground state	Lower <i>IE</i> , more <i>EA</i> and high lattice energy are
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	required conditions for ionic bonding.
Floctronic configuration of Va in evolted state	258 (d)
s Sn Sd	Ionisation potential increases along the period.
	259 (b)
Electronic configuration of Xe in XeF	More is <i>s</i> -character, smaller is hybridized orbital,
5s $5n$ $5d$	more becomes tendency for overlapping, more is
	bond energy, lesser is bond length.
	260 (c)
sp ³ d ² -hybridisation	Larger is the difference in electronegativities of
Note The expected geometry of XeF_4 is	two atom, more is polar character in bond.
octahedral. On account of the fact that <i>lp-lp</i>	261 (a)
repulsion > <i>lp-bp</i> repulsion, there is some	ine molecules having no difference in
distortion octahedral geometry with two lone pair	electronegativity of bonded atoms are non-polar
of electrons. In other words, it has a square planar	In nature. They are molecules naving same atoms.
geometry.	•• Among nu, nr, nr and H_2 . H_2 is non-polar molecule
440 (U) 1	262 (b)
$\text{Li}_2: KK(\sigma 2s)^2, BO = \frac{1}{2}(2-0) = 1$	202 (U)

linear shape.

276 (c)

Species having the same number of electron, have same bond order.

<u> </u>	
Species	Number of
	electrons
CN ⁻	6+7+1=14
0_2	8+8+1=17
NO ⁺	7+8-1=14
CN ⁻	6+7-1=12

Since, CN^- and NO^+ have same number of electrons, they have same bond order, *i. e.*, 3. CN^- or NO^+ = 14=

 $\sigma 1s^{2}, \, _{\sigma}^{*} 1s^{2}, \sigma 2s^{2}, \, _{\sigma}^{*} 2s^{2}, \sigma 2p_{z}^{2}, \pi 2p_{x}^{2} \approx \pi 2p_{y_{z}}^{2}$ Bond order = $\frac{N_{b}-N_{a}}{2}$ = $\frac{10-4}{2}$ = 3.

277 (c)

In water molecule the H - O - H bond angle is 104.5° and dipole moment is 1.84 D.

The bond angle of H_2O is lower than 109.28" due to the presence of two lone pair of electrons on the oxygen atom.

278 (d)

Follow text.

279 (a)

 RCH_2NHCH_3 shows the hydrogen bonding, since H is attached to N atom.

280 (c)

Cl atom has 17 electrons, Cl⁻ ion has 18 electrons. 281 **(a)**

High boiling point. of water is due to dipole-dipole interaction.

282 **(d)**

Ionisation enthalpy increases along the period and decreases down the group.

283 **(b)**

The jump in IP values exist in IP_5 and thus, removal of fifth electron occurs from inner shell. Thus, element contains four electrons in its valency shell.

284 **(a)**

Paramagnetic species has unpaired electron. $\mathrm{B}_2=5+5=10~\sigma 1s^2$, ${}^*_\sigma 1s^2$, $\sigma 2s^2$, ${}^*_\sigma 2s^2$, $\pi 2p^1_x$ $= \pi 2 p_{y}^{1}$ $C_2 = 6 + 6 = 12$ $= \sigma 1 s^{2}, \,_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2}, \,_{\sigma}^{*} 2 s$ $= \pi 2 p_{y}^{2}$ $N_2 = 7 + 7 = 14 = \sigma 1 s^2$, ${}^*_{\sigma} 1 s^2 \sigma 2 s^2$ $=\pi 2p_{\nu}^2$, $\sigma 2p_z^2$ $F_2 = 9 + 9 = 18$ $= \sigma 1 s^{2, *} \sigma^2 1 s^2, \sigma^2 2 s^{2, *} \sigma^2 2 s^2, \sigma^2 p_z^2, \pi^2 p_z^2$ $=\pi 2p_y^2$, $\pi^2 2p_x^2 = \pi^2 2p_y^2$ \therefore B₂ is paramagnetic because it has unpaired electron. 285 (a) $Na \rightarrow Na^+ + e; IE \text{ of } Na = +ve$ $Na^+ + e \rightarrow Na; EA \text{ of } Na^+ = -ve$ Both are equal but opposite in nature. 286 (c) (a) CH_4 \rightarrow CH₃ - CH₃ 4*bp*+ 0*lp* 4*bp* 4bpHybridisation sp^3 sp^3 sp^3 Structure tetrahedral tetrahedral NH_4^+ (b) NH_3 3bp + 1lp4bpHybridisation sp^3 sp^3 Structure pyramidal tetrahedral (c) BF3 BF_4 3*bp* 4bpHybridisation sp^2 sp^3 Structure trigonal tetrahedral planar H_2O H₃0⁺ (d) 2bp + 2lp3bp + 1lpHybridisation *sp*³ sp^3 Structure angular pyramidal Thus conversion of BF₃ into BF₄ involves change in both hybridisation and shape. 287 (a) In O_2 molecule, the total number of electrons = 16 Electronic distribution in molecular orbital of $0_2 = \sigma 1 s^2$, ${}^*_{\sigma} 1 s^2$, $\sigma 2 s^2$, ${}^*_{\sigma} 2 s^2$, $\sigma 2 p_x^2 (\pi 2 p_y^2, \pi 2 p_z^2)$ $({}^{*}_{\pi}2p^{1}_{y}, {}^{*}_{\pi}2p^{1}_{z})$ Bond order in $O_2 = \frac{1}{2}[N_{b-}N_a] = \frac{1}{2}[10-6] = 2.0$ In $O_2^+ = \sigma 1 s^2$, ${}_{\sigma}^* 1 s^2$, $\sigma 2 s^2$, ${}_{\sigma}^* 2 s^2$, $\sigma 2 p_x^2$

 $(\pi 2p_y^2 = \pi 2p_z^2), (\pi 2p_y^1)$ Bond order in $O_2^+ = \frac{N_{b-}N_a}{2} = \frac{10-5}{2} = 2.5$

288 (a)

Percentage ionic character

 $\frac{\text{experimental value of DM}}{\text{theoretical value of DM}} \times 100$ $= \frac{1.03}{6.12} \times 100 = 17\%$

289 **(b)**

Electron affinity decreases down the group, but 'O' has small atomic size and 2p-orbital becomes very compact and already has 6 electrons, hence, there is a repulsive force among the already present and added electrons. Some of the energy evolved, due to addition of electron, is used to reduce the repulsion. Hence, the E.A. of O is less than S, so the order is S > O > Se.

290 (a)

A π -bond has a nodal plane passing through the two bonded nuclei, *i. e.*, molecular plane.

—Nodal plane, *i.e.*,

molecular plane.

291 (c) Electronega

Electronegativity of elements increases along the period and decreases down the group.

292 **(b)**

In CO₂, C-atom is *sp*-hybridised, thus it has linear structure. In XeF₂, Xe is sp^3d hybridised with three lone-pairs of electrons on equatorial position. This minimises repulsion, hence it has also linear structure.

293 **(b)**

Structure of CO_2 is linear due to *sp*-hybridisation. (*sp*)

0 = C = 0294 (a)

Higher the bond order short the bond length O_2^{2+} has the shortest the bond length (BO=3)

Bond order of remaining species are :

 $0_2^+(2.5), 0_2^-(1.5) \text{ and } 0_2^{2-}(1)$

295 **(b)**

- 11. The first bond between any two atoms is σ and rest are π bonds.
- 12. π bond is formed by sideways overlapping of unhybridised *p*-orbital.

304 (d)

 $cich = ch_2,$

chloroethene benzene

 sp^2 hybridised chloroethene $CH_2 = CH - CH = CH_2$ $sp^2 \quad sp^2 \quad sp^2 \quad sp^2$ $CH_2 = CH - CH = CH - CH = CH_2$ $sp^2 \quad sp^2 \quad sp^2 \quad sp^2 \quad sp^2 \quad sp^2$ 1, 3, 5-hexatriene

305 (d)

If the lattice energy < hydration energy, then only ionic compounds are soluble.

306 (c)

BCl₃ has equilateral triangular shape leading to vector sum of polar bonds to zero.

307 (d)

Hybride : H_2O H_2S H_2Se H_2Te Bond angle : 104° 92° 91° 90°

In all of the given species central atom is sp^3 hybridised. They have angular shape due to the presence of two lone pair of electron. The bond angle decreases with decrease in electronegativity therefore H₂Te shows minimum bond angle.

308 **(d)**

Lattice energy \propto charge of ions $\propto \frac{1}{\text{size of ions}}$

309 **(b)**

 He_2^+ , H_2^- have 3 electrons, one must be unpaired. H_2^+ has one unpaired electron. H_2 has two (paired) electrons.

310 (c)

Among the given, only CH_3OH and CH_3NH_2 are able to form H-bonds but H-bonding in CH_3OH due to high electronegativity of O-atom is strong. Hence, CH_3OH has the highest boiling point.

 $(\sigma-bps + lps = 3+1=4)$

In NF₃ N-atoms is sp^3 -hybride, but due to presence of a lone pair of electron, NF₃ has pyramidal structure.

312 (d)

The boiling point of ethanol is highest among

these due to the presence of hydrogen bonding. 313 **(b)**

 $C_2^{2^-}$ has $[C \equiv C]^{2^-}$ structure.

314 (a)

A compound having maximum electronegative element will form strong hydrogen bond

315 (c)

all carbon atoms are

The bond angle in CH_3OCH_3 is 110° inspite of sp^3 -hybridization of 0 and two lone pair due to stearic hindrance.

316 **(b)**

Multiplicity in bonding give rise to an increase in bond energy.

317 (a)

Carbon in H_2CO_3 has sp^2 -hybridization and also polar. BF_3 has sp^2 but non-polar. SIF_4 has sp^3 hybridization. $HClO_2$ has sp^3 -hybridisation.

318 **(b)**

The removal of second electron from Mg takes place from 3*s*-orbital whereas, the removal of second electron from Na takes place from 2*p*-orbital. More closer are shells to the nucleus, difficult is removal of electron.

319 (b)

Hence,

Bond angle depends on the structure of molecule. If two molecules have same structure, then bond angle is decided by the electronegativity of central atom. Electrongeativity of central atom \propto bond angle.

The bond angle of H_2S is less than H_2O because S is less electronegative than H_2O .

 $H_2 O > H_2 S$ (104.5°) (92.2°)

Further the $BeCl_2$ has linear structure, hence its bond angle is 180°. The N₂O molecule also has linear structure with bond angle 180°.

$$: N = \stackrel{+}{N} = 0 \quad \longleftrightarrow \quad N = \stackrel{+}{N} = 0$$

320 (a)

S has 6 electrons in its the valence shell and it shares 6 electrons with 6 fluorine atoms.

 \div In SF₆, S has 12 electrons in its valence shell

$$F + F$$

$$\times \bullet \bullet$$

$$F \times \bullet \bullet \bullet \bullet \times F$$

$$\times \times F$$

$$F + F$$

322 (b)

 NH_3 , $[PtCl_4]^{2-}$, PCl_5 and BCl_3 have sp^3 , dsp^2sp^3d

and sp^2 hybridization respectively. Note that hybridization of P in PCl₅ is wrongly reported in problem.

323 **(b)**

The bond formation process is exothermic and thus resultant acquires lower energy level.

324 **(b)**

Due to H-bonding in NH₃.

325 (a)

Lewis structure of N₂ molecule is

$$\begin{pmatrix} \times & \mathsf{N} & \times \\ \times & \mathsf{N} & \times \\ \times & \times & \mathsf{N} \\ \times & \times & \mathsf{N} \\ \times & \mathsf{N} \end{pmatrix} \text{or} \quad \overset{\times}{\times} \mathsf{N} \blacksquare \mathsf{N}_{\times}^{\times}$$

326 **(b)**

The resonating structure of ClO_4^- are as

$$\Rightarrow Bond order = \frac{Total number of bonds between Cl and 0}{Total number of resonating structure}$$

327 (a)

Bond energy increases with increase in bond order.

328 **(d)**

Ionisation potential increases along the period.

329 **(b)**

CsCl is most ionic because of most electropositive nature of Cs.

330 **(d)**

 $0_2 < 0_2^-$ Bond order $C_2 = 2$ $C_2^{2-} = 3$ $B_2 = 2$ $B_2^+ = 1.5$ $Li_2 = 1$ $Li_{2}^{+} = 0.5$ $N_2 = 3$ $N_{2}^{+} = 2.5$ $0_2 = 2$ $0_{2}^{-} = 1.5$ 331 (d) The molecular configuration of O_2^- is as $\sigma 1s^2$, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\sigma 2p_z^2$, $\pi 2p_y^2$ $\approx \pi 2 p_z^2$, $\pi^2 2 p_x^2 \approx \pi^2 2 p_y^2$ Bond order = $\frac{N_{b-}N_{a}}{2}$ $=\frac{10-8}{10-8}$

 \therefore Bond order = 1

332 **(b)**

It is an ionic compound. The most ionic compound is CsF.

333 **(c)**

 CO_2 is linear molecule.

334 **(b)**

M.O. configuration of N_2 is:

 $\sigma 1s^2 \sigma^* 1s^2, \sigma 2s^2 \sigma^* 2s^2, \pi 2p_y^2, \pi 2p_z^2, \sigma 2p_x^2$

M.O. configuration of N₂⁺ is: $\sigma 1s^2 \sigma^* 1s^2, \sigma 2s^2 \sigma^* 2s^2, \pi 2p_v^2, \pi 2p_z^2, \sigma 2p_x^1$

335 **(d)**

In NH₄⁺ ion, N is sp^3 hybridised therefore, bond angle in NH₄⁺ (tetrahedral shape) is 109°28'.

336 **(a)**

The definition of bond order.

338 **(b)**

The intermolecular forces increase with increases in mol. wt.

339 **(b)**

Bond angles of BeF_2 , H_2O , NH_3 and CH_4 are 180°, 104°31', 106°50', 109°28' respectively.

340 **(d)**

Bond length decreases with increase in *s*-character.

341 (b)

Isoelectronic species have same number of electrons, NO^+ , C_2^{2-} , CN^- and N_2 . All have 14 electrons.

342 **(d)**

 sp^3d^2 hybridised molecule have octahedral geometry.

343 **(b)**

344 **(a)**

The shape of ClF_3 is distorted T-shape due to the presence of two lone pair of electrons.

345 **(b)**

These are facts.

346 **(c)**

 NO_2^- has sp^2 hybridisation. Its expected geometry is trigonal planar but actual geometry is V-shape due to presence of lone pair of electrons.

347 (d)

 Cs^+ is biggest ion among these. F^- is smallest.

348 (d)	359 (d)
Formation of solid lattice from oppositely charged	Ionic compounds conduct current only in fused
ionized gaseous atoms give rise to evolution of	state.
lattice energy.	360 (b)
349 (b)	IP_1 of $B > IP_1$ of Li ENC of boron is more than Li.
We know that Al ³⁺ cation is smaller than Na ⁺	Also IP_1 of $Li > IP_1$ of K because removal of
(because of greater nuclear charge). According to	electron in K occurs from 4s.
Fajan's rule, small cation polarise anion upto	361 (c)
greater extent. Hence, Al^{3+} polarise Cl^{-} ions upto	It is a fact.
greater extent, therefore, AlCl ₃ has covalent bond	363 (d)
between Al and Cl atoms.	0 has two lone pair of electrons.
350 (a)	
H—0—0—H, 0∓0≡0,0—0	In SF ₄ , S has $sp^{\circ}a$ -hybridisation. Thus, it contains
	two axial and two equatorial bonds to give see-
Due to resonance, in O_3 , the $O - O$ bond length will	saw structure.
be in between $0 = 0$ and $0 - 0$	sp ³ d
352 (b)	
Bond order for $O_2 = 2$ and for $O_2^+ = 2.5$	
Both are paramagnetic (O ₂ has 2 unpaired	2p 2p 2p 2p
electron, O_2^+ has one unpaired electron).	365 (a)
354 (c)	F ₃ Cl has 10 electrons on Cl atom. A superoctet
$[0-0]^{2-}$	molecule means for expanded octet on an atom.
355 (b)	366 (c)
For sp^2 hybridization, bond angle is 120°	S_2 molecule is paramagnetic like O_2 having 2
In sp^2 hybridization,	unpaired electrons.
s character = $\frac{1}{3} \times 100 = 33\%$	368 (a)
356 (d)	π -bonding occurs only after 6-bond is formed.
ClF_3 has sp^3d -hybridization with two lone pair of	NH^+ and SO^2 – both show sn^3 hybridication and
electron on Cl.	tetrahedral geometry
357 (a)	370 (c)
13. $0_2 = 8 + 8 = 16$	Dipole moment is a vector quantity. The dipole
$= \sigma_1 s^2, *_{\sigma_1} s^2, \sigma_2 s^2, *_{\sigma_2} s^2, \sigma_2 v^2, (\pi 2 p_{\sigma_2}^2)$	moment of symmetrical molecule is zero. Only the
$\pi 2 p_{y}^{2}$, $(\frac{*}{\pi} 2 p_{y}^{1} = \frac{*}{\pi} 2 p_{y}^{1})$	molecule which has distorted shape has dipole
\therefore It has 2 unnaired electrons.	moment.
\therefore It is paramagnetic.	ÇI
14. $CN^- = 6 + 7 + 1 = 14$	
$=\sigma 1s^2$, $_{\sigma}^{*}1s^2$, $\sigma 2s^2$, $_{\sigma}^{*}2s^2$, $\sigma 2p_z^2$, $(\pi 2p_x^2 = \pi 2p_y^2)$	
No unpaired electron and no paramagnetic.	CO_2
15. $CO = 6 + 8 = 14$	н ^{́ н}
$\int -\sigma 1s^2 * 1s^2 \sigma 2s^2 * 2s^2 \sigma 2n^2 (\pi 2n^2 - \pi 2n^2)$	l l Cl
$= 013, \sigma_13, 023, \sigma_23, 02p_z, (n2p_x = n2p_y)$: No unpaired electron and no paramagnetic	<i>p</i> -dichlorobenzene methane
16. $NO^+ = 7 + 8 - 1 = 14$	(a) (b) (d)
	\therefore CO ₂ , <i>p</i> -dichlorobenzene and CH ₄ have regular
$=\sigma 1s^2 {}^*_\sigma 1s^2$, $\sigma 2s^2$, ${}^*_\sigma 2s^2$, $\sigma 2p_z^2$, $(\pi 2p_x^2 = \pi 2p_y^2)$	symmetrical shape.
\therefore No unpaired electron and not paramagnetic.	∴ They don't have dipole moment.
358 (c)	
C— F bond is more polar than C— Cl.	

$$H \xrightarrow{N}_{H} H$$
(NH₃)
(c)

NH₃ has distorted structure due to presence of lone pair of electron.

∴ It has dipole moment.

371 (c)

According to Fajan's rule smaller anion is polarised to lesser extent than the larger anion.

: compound having smaller anion has more ionic character.

∴ Higher melting

Since, the size of F^- ion is smallest, it is polarised.

: AgF will have highest ionic character and hence highest melting point.

(:: Ionic compounds have greater melting point than covalent compound)

372 (a)

Number of hybrid orbitals for neutral atom = $\frac{1}{2}$

[Number of valence electron in central atom + Number of monovalent atom]

Number of hybrid orbital = $\frac{5+5}{5} = 5$

Hence, hybridisation is sp^3d .

374 (a)

The size of isoelectronic decreases with increase in atomic number.

375 (a)

Bond angle for sp, sp^2 and sp^3 -orbitals are 180°, 120° and 109°28' respectively.

378 (d)

In BrF₃ molecule, Br is sp^3d hybrid, but geometry is T-shaped due to distortion of geometry from trigonal-bipyramidal to T-shaped the by involvement of lone pair-lone pair repulsion. Here 🔨

2

$$lp - lp \text{ repulsion} = 0$$

$$lp - bp \text{ repulsion} = 4$$

$$bp - bp \text{ repulsion} = 2$$

$$F$$

$$F$$

$$F$$

379 (b)

As the distance between the atoms, increases, bond polarity increases

380 (d)

 EA_1 for elements is exothermic and EA_2 is endothermic. Also EA_2 for $0 > EA_1$ for 0.

381 (a)

 $0_2^- = 8 + 8 + 1$ $= \sigma 1 s^2$, ${}^*_{\sigma} 1 s^{2}_{\sigma} \sigma 2 s^2$, ${}^*_{\sigma} 2 s^{2}_{\sigma} \sigma 2 p_z^2$, $\pi 2 p_x^2$ $=\pi 2p_{y}^{2}$, $_{\pi}^{*}2p_{x}^{2}=_{\pi}^{*}2p_{y}^{1}$ \therefore Total antibonding electrons = 7 $0_2 = 8 + 8 = 16$ $=\sigma 1s^2, \, {}^*_{\sigma} 1s^2, \, \sigma 2s^2, \, {}^*_{\sigma} 2s^{2}, \sigma 2p_z^2, \pi 2p_z^2$ $\pi 2p_{\nu}^2$, $\pi 2p_{\chi}^1 = {}^*_{\pi} 2p_{\nu}^1$ \therefore Total antibonding electrons = 6 $0_2^{2-} = 8 + 8 + 2 = 18$ $=\sigma 1 s^{2,*} {}^{*}_{\sigma} 1 s^{2,*} \sigma 2 s^{2,*} {}^{*}_{\sigma} 2 s^{2,*} \sigma 2 p_{z}^{2}$, $\pi 2 p_{x}^{2}$ $=\pi 2p_{y}^{2}, \pi 2p_{x}^{2} = \pi 2p_{y}^{2}$ \therefore Total antibonding electrons = 8

382 (d)

In NH₃, N undergoes sp^3 hybridisation. Due to the presence of one lone-pair, it is pyramidal in shape.

383 (d)

Hg exists in liquid state.

384 (b)

According to valence bond theory, overlapping orbitals must possess half-filled nature as well as antispin electron.

385 (a)

Non-polar or pure covalent bond has zero per cent ionic character due to the absence of partial charges on either end.

386 (a)

The dipole moment of two dipoles inclines at an angle θ is given by the equation $\pi =$

 $\sqrt{x^2 + y^2 + 2xy\cos\theta}, \cos 90 = 0$, since, the angle increases from 90 - 180, the value of $\cos \theta$ becomes more and more -ve and hence resultant decreases. Thus, dipole moment is maximum, when, $\theta = 90^{\circ}$

387 (a)

$$CO(14) = \sigma 1s^{2}, {}^{*}_{\sigma} 1s^{2}, \sigma 2s^{2}, {}^{*}_{\sigma} 2s^{2}, \pi 2p_{y}^{2}$$
$$= \pi 2p_{z}^{2}, \sigma 2p_{x}^{2}$$
$$BO = \frac{N_{b} - N_{a}}{2} = \frac{10 - 4}{2} = 3$$
$$NO^{-}(16) =$$

$\sigma 1s^2, \ \sigma^2$ $^*_{\pi}2p^1_{\mathcal{Y}} =$	$s^{2}, \sigma 2s^{2}, {}_{\sigma}^{*} 2s^{2}, \sigma 2p_{x}^{2}, (\pi 2p_{y}^{2} = \pi 2p_{z}^{2}),$ ${}_{\pi}^{*} 2p_{z}^{1}$		The solubility of a compound mainly depend upon its hydration energy. If the hydration energy of a
$BO = \frac{10}{2}$	$\frac{6}{2} = 2$		enthalpy, then its is soluble in water. Thus, for
$NU^{+}(13)$; BO = 3		solubility
$N_{a}(14)$	30 = 3		Hydration enthalpy > lattice
Hence, b	ond order of NO ⁻ is different from that of		enthalpy
CO.			For compounds P and R hydration enthalpy
388 (a)			exceeds the lattice enthalpy, so they are soluble in
S atom in	$3 \mathrm{SF}_6$ is $s p^3 d^2$ -hybridized state and shows	400	(a)
octahedr	al shape.	400	It is a fact derived from bond order
389 (b)		401	(h)
The stab	ility of carbonates increases with	101	I has maximum covalent bond and negative
increasir	g electropositive character of metal.		charge on electronegative nitrogen, most stable.
391 (c)			III has more covalent bond than both II and IV, III
Larger is	the size of atom, lesser is the tendency		is second most stable. Between II and IV, II is
for overl	apping, lesser is bond energy.		more stable since it has negative charge on
392 (a) The pole	prising ability is characteristic of sation		nitrogen while IV has negative charge carbon.
smaller f	he size of cation with large magnitude of	402	(b)
nositive	charge more will be its polarising ability.		Hybrid orbitals never form π -bond.
(:: It can	cause large distortions in anion cloud.)	404	
393 (a)	,		$\mathbf{U}_{2}(16) = \sigma I s^{2}, \ \sigma I s^{2}, \sigma 2 s^{2}, \ \sigma 2 s^{2}, \sigma 2 p_{z}^{2}, \pi 2 p_{x}^{2}$
ClO ₂ has	33 electrons, <i>i. e.</i> , one unpaired.	\sim	$\approx \pi 2 p_{\tilde{y}}^2, \ \pi 2 p_{\tilde{x}}^2 \approx \pi 2 p_{\tilde{y}}^2$
394 (c)			$BO = \frac{10}{2} = 2$
Larger a 395 (c)	nion is polarized more (Fajans' rule).		$0_{2}^{2-}(18) = \sigma 1s^{2}, {}_{\sigma}^{*}1s^{2}, \sigma 2s^{2}, {}_{\sigma}^{*}2s^{2}, \sigma 2p_{z}^{2}, \pi 2p_{x}^{2}$ $\approx \pi 2p_{y}^{2}, {}_{\pi}^{*}2p_{x}^{2} \approx {}_{\pi}^{*}2p_{y}^{2}$
The mol	ecules having distorted geometry have		$BO = \frac{10-8}{2} = 1$
dipole	moment and those having regular		$N_2(14) = \sigma 1s^2, \ {}_{\sigma}^* 1s^2, \ \sigma 2s^2, \ {}_{\sigma}^* 2s^2, \ \pi 2p_x^2$
geometr	y have zero dipole moment.		$pprox \pi 2 p_y^2, \sigma 2 p_z^2$
∵ NH ₃ , (• Thou h	H_3 Cl and ClO ₂ have distorted geometry.		$BO = \frac{10-4}{2} = 3$
•• They h	ave uipole moment. s regular triangular planar geometry		2 Thus hond order is highest for N ₂
The ding	le moment of BF ₂ is zero.	405	(d)
396 (c)	le moment or Dr.3 is zero.		Molecular shapes of SF_4 , CF_4 , XeF_4 are different
When h	ydrogen forms hydrogen bonding with		with 1, 0 and 2 lone pair or electrons respectively.
fluorine	it will be strongest H-bonding because	406	(c)
fluorine	is strongest electronegative element.		The correct sequence of hybridisation of methane,
397 (b)			ethene and ethyne is sp^3 , sp^2 and sp .
Trans 2-	pentene has dipole moment.	407	(b)
H ₃ C	H		Diamond has a three-dimensional structure in
			which a large number of carbon atoms are
н	CH_2CH_3		alletronic form of carbon
Because	+7 effect of ethyl group is more than that	408	(h)
OI LH ₃ gi	roup, nence the two dipoles do not cancel	100	The ionisation potential decreases down the
	51.		group.
NH≂ has	sn^3 -hybridization having two covalent	409	(b)
bonds ar	d two lone pair of N atom.		BeH ₂ molecule is linear because it has <i>sp</i> -
399 (d)			hybridisation. It has bond angle180° .

410 **(b)**

 $Be_2(\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2)$ has bond order equal to zero.

411 **(c)**

 15σ and $3\pi\text{-}$ bonds are present in toluene.

- 412 **(b)**
 - In H_20 , H-atom contains only two electrons.
- 413 **(c)**

Both $HgCl_2$ and C_2H_2 are linear like CO_2 because of *sp*-hybridization.

414 **(d)**

Follow concept of bond order in M.O. theory.

- 415 (d) HC \equiv C - HC = CH - CH₃ 10 σ , 3 π
- 416 **(b)**

 $CCl_2 = CCl_2$ has sp^3 -hybridization. CCl_4 has sp^3 -hybridization.

417 **(c)**

All are non-metals.

419 **(c)**

Boiling point of ammonia is much higher than phosphine. It is due to extensive hydrogen bonding found in ammonia.

420 **(b)**

Lower potential energy level imparts stability. 421 (d)

Covalent character $\propto \frac{1}{\text{size of cation}} \propto \text{size of anion}$

(according to Fajan's rule)

Lower the covalent character, higher will be ionic

character.

 Cl_2O , contains O^{2-} , NCl_3 contains N^{3-} , $PbCl_2$ contains Pb^{2+} and $BaCl_2$ contains Ba^{2+} . Hence, the order of covalent character is $NCl_3 > Cl_2O > PbCl_2 > BaCl_2$ ∴ $BaCl_2$ has the greatest ionic character.

422 **(c)**

Kernals start vibrating and hence, create hindrance in the flow of electrons

423 **(d)**

Chile salt petre $(NaNO_3)$, potash alum $(K_2SO_4.Al_2(SO_4)_3.24H_2O)$ and green vitriol $(FeSO_4.7H_2O)$ are ionic compounds. They

(FeSO₄. 7H₂O) are ionic compounds. They produce ions in their aqueous solutions, so they are conducting in nature. Ethyl alcohol, C_2H_5OH being covalent in nature, does not produce any ion in aqueous solution. Hence, it is non-conducting in nature.

424 **(c)**

Due to large electronegativity difference in C and F atoms.

425 **(a)**

Proteins show H-bonding.

426 **(c)**

Bond angles decreases down the group.

 \therefore H₂O > H₂S. Also bond angle of H₂O < NH₃ due to lone pair effect.

427 **(c)**

In the above compound all bonds are σ bond and hence, carbon atom uses only sp^3 - hybrid orbitals for bond formation.

428 **(b)**

It is the order of stability.

429 **(b)**

 E_1 for He⁺ = E_1 for $H \times Z^2$ (where Z=at. no. of He).

430 **(c)**

H—bonding order:

 $\cdots H - F > \cdots H - 0 > \cdots H - N$

431 (d)

The charge-size ratio increases and thus

polarizing power increases.

434 (c)

 O_2 has two unpaired electrons.

435 (d)

These are the factors on which IP depends.

436 **(b)**

The hybridised states of N in NO_2^+ , NO_3^- and NH_4^+ are sp, sp^2 and sp^3 respectively.

437 (b)

Carbon (1) has 2σ – and 2μ – bonds. Carbon (2) has 3σ and 1π -bond.

438 (c)

According to Fajan's rule, as the size of cation decreases, its polarising power increases. Hence, Cu²⁺ polarise Cl⁻ ions more than Cu⁺. Therefore, CuCl₂ has more covalent character and hence, its boiling point is less.

439 **(b)**

Metals are more electropositive and lose electrons, while non - metals have tendency to gain electron.

440 **(b)**

Be has smallest size and thus, Be cation possesses more polarizing power.

441 **(b)**

Due to intermolecular hydrogen bonding in ortho-isomer, it has least melting point. Due to effective intermolecular hydrogen bonding in para isomer, it has highest melting point among the isomers. So, the order is

Para isomer > *meta* > *ortho*

(114°C) (97°C) (54 °C)

443 (a)

Based on geometry of molecule.

444 **(b)**

The structure of these molecules/species are as follows :

 PCl_3 has sp^3 -hybridisation but due to presence of 459 (d) a lone-pair, its shape is pyramidal instead of

tetrahedral.

446 (c)

[C] forms anion readily by gaining one electron only.

447 (c)

Number of bonds between two atoms is called bond order.

Resonating structures of benzene are

: In benzene, the carbon - carbon bond is between the double and single bond due to the resonance, so its bond order is 1.5.

448 (a)

If difference in electronegativity in between two atoms is 1.7, the molecule possesses 50% covalent +50% ionic nature.

449 (b)

 IP_1 of Pb > IP_1 of Sn (an exception).

450 (c)

Only then it can accept lone pair in that shell.

451 (a)

Count σ -and π -bonds.

```
452 (b)
```

The molecular electronic configuration of O_2 is

$$0_{2} = [KK, (\sigma 2s)^{2}, ({}^{*}_{\sigma} 2s)^{2}, (\sigma 2p_{x})^{2}, (\pi 2p_{y})^{2} = (\pi 2p_{z})^{2}, ({}^{*}_{\pi} 2p_{y})^{1} = (\pi 2p_{z})^{1}]$$

$$= (\pi 2p_z)^2, (\pi^2 2p_y)^2 = (\pi 2p_z)^1$$

453 (d)

Cs is more electropositive.

454 (a)

In MnO_4^- , the oxidation no. of Mn is +7, *i.e.*, all the 4s and 3d electrons are lost.

455 (d)

Stability \propto bond order

456 **(b)** Charge of $e^- = 1.6 \times 10^{-19}$ C Dipole moment of HBr = 1.6×10^{-30} C-m

Interionic spacing = $1 \text{ Å} = 1 \times 10^{-10} \text{ m}$

- % of ionic character in
- Dipole moment of HBr \times 100 HBr =Interspacing distance $\times q$

$$1.6 \times 10^{-30} \times 100$$

$$=\frac{1.6 \times 10^{-19} \times 10^{-10}}{1.6 \times 10^{-19} \times 10^{-10}}$$

$$= 10^{-30} \times 10^{29} \times 100 = 0.1 \times 100 = 10\%$$

Due to shielding effect of (n-1)d-subshell.

P in PO₄³⁻has sp^3 -hybridization like S in SO₄²⁻.

460 (d) S in II excited state = The lattice becomes stronger (i.e., the lattice 1 1 1 1 1 1 energy U becomes more negative). As r the $(sp^3)^1 3d_z^{2^1} 3d^1 x^2 - y^2$ interionic distance decreases. U is proportional to $(sp^3)^1 (sp^3)^1$ $SO_4^{2-} = (sp^3)^1$ 1 σσ \overline{r} $U \propto \frac{1}{(r_c + r_a)}$ or $6^{-}2px 2px 6^{-}2py$ $\dot{O} 2px$ 462 (a) Covalent radius are always smaller than crystal radius as the former involves overlapping region. 463 (c) CO_3^{2-} has the following structure Tetrahedral shape of SO 471 (d) SF_4 has sp^3d -hybridization with one lone pair, It contains only covalent bonds CF_4 has sp^3 -hybridization with no lone pair and 464 (c) XeF₄ has sp^3d^2 -hybridization with two lone pairs. Molecular orbital configuration of, 472 (a) $C_{2}^{+} = \sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \sigma 2 p_{x}^{2}, \pi 2 p_{y}^{1}$ 466 (d) Mullikan proposed M.O. theory. 467 (d) $(\sigma - bps + lps = 3 + 1 = 4)$ $Cl_2O = 42$ electrons Hence, hybridisation $= sp^3$ $ICl_2^- = 88$ electrons In NH_3 N-atoms is sp^3 hybridised, but due to $Cl_2^- = 35$ electrons presence of a lone pair of electron on N-atom. It is $IF_2^+ = 70$ electrons pyramidal in shape. $I_3^- = 160$ electrons 473 (b) $Cl_2 0 = 33$ electrons For a compound to be soluble, the hydration $ClO_2^- = 34$ electrons energy must be greater than the lattice energy. $ClF_2^+ = 34$ electrons Since, NaCl is soluble in water but insoluble in ClO_2^- and ClF_2^+ contain 34 electrons each hence benzene. they are isoelectronic. $\Delta H_{\rm hydration} > \Delta H_{\rm lattice \, energy \, in \, water}$ 468 (a) 1, 2-butandiene has the structure. $\Delta H_{\rm hvdration}$ and Η Η Η $< \Delta H_{\text{lattice energy in benzene}}$ 474 (b) H - C - C = C = C - HDimerization occurs in carboxylic acids which $|sp^3 sv^2 sn sr$ indicates strong H-bonding. 475 (c) 469 (d) $H_{\overline{\sigma}} C_{\overline{\sigma}}^{\underline{2\pi}} C_{\overline{\sigma}} C_{\overline{\sigma}}^{\underline{\sigma}} C_{\overline{\sigma}}^{\underline{\sigma}} H$ Anions are always larger in size than their parent atom. Cations are always smaller in size than their parent atom. 470 (d) Thus, the number of σ and π bonds respectively Sulphade ion $(S0_4^{2-})$ has tetrahedral geometry, as are 7 and 3 in S-atom undergoes sp^3 hybridisation. 476 (a) Solubility order : AgF > AgCl > AgBr > AgI. 477 (d) Cal₂ has maximum covalent character due to large

size of anion and possesses lowest lattice energy.

Thus melting point is l	owest.		Both possess sp^2 -hybridization but different
478 (c)			geometry.
Hybridisation= $\frac{1}{2}$ [no.	of electron in valence shell	485	(c)
+ no. of monovalent	t atoms-charge on cation+		In transition elements, penultimate shell electrons
charge on anion]		100	also participate in bonding.
17. H ₂ 0		486	(B) $0 + 0^{2+} 0^{2-}$
$H = \frac{1}{2}(6 + 2 + 0 - 0) = \frac{8}{2} = 4$			Species O_2
$\therefore sp^3$ hybridisation			Hence, the increasing bond order is as follows : $0_2^{2-} < 0_2 < 0_2^+ < 0_2^{2+}$
18. CH ₄		487	(b) $\pi 2p_x$ and $\pi 2p_y$ or $*_{\pi 2p_x}$ and $*_{\pi 2p_y}$ orbitals have
$H = \frac{1}{2}(4 + 4 + 0 - 0)$			nearly equal energy and thus, are called degenerate orbitals.
-8-4		488	(a)
=-=4			The most electronegative element is F and next to
$\therefore sp^3$ hybridisation			F is O.
-F J		489	(c)
19. BCl ₃			Ions are held in NaCl by coulombic forces and
$H^{-1}(2+2+0,0)$		400	thus, possess no velocity.
$H = \frac{-2}{2}(3+3+0-0)$		490	(D) Dath have one long nois of electron
$=\frac{6}{3}$		1.01	Both have one lone pair of electron.
2			Lattice energy $II = \frac{q_1 q_2}{q_2}$
$\therefore sp^3$ hybridisation	4		Since interior distances in CoO and NaCl are
20 111	Ċ		similar (larger cation has smaller anion and vice
20. NH ₃		·	r is almost the same. Therefore, lattice
$H = \frac{1}{2}(5 + 3 + 0 - 0)$			energy depends only on charge. Since, the
2			magnitude of charge on Na ⁺ and Cl ⁻ ions is same
$=\frac{8}{2}=4$			<i>ie</i> , unity and that on Ca^{2+} and O^{2-} ions is 2 each,
Z			therefore, the lattice energy of CaO is four times
$\therefore sp^3$ hybridisation			the lattice energy of NaCl, <i>ie</i> ,4U
\cdot (c) is correct answer	r.	492	(a)
479 (a)			sp sp sp^2 sp^2
H ₂ O shows high b.p. (i	nspite of lowest mol. wt.)		$CH \equiv C - CH = CH_2$
on account of strong H	I-bonding.		Hence, carbon atom bonded to each other by
480 (d)			single $(C - C)$ are en and en^2 hybrid
C_2H_2 is a linear molect	ule with <i>sp</i> -hybridization.	492	(c) c) are spand sp inybrid.
481 (b)		175	In IF_{r} , halogens are member of VII group.
KO_2 is an ionic compo	una.		Summation of group number
In all the given comp	nounds anion is $\operatorname{same}(C^{-})$		= 42
hence nolarising now	ver is decided by size and		Bond pair = $\frac{42}{2}$ = 5(Residue) 2
charge of cation. Al ³⁺	with maximum charge and		$\frac{8}{1000}$
smallest size has m	aximum polarising power		$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$
hence, AlCl ₃ is maximu	um covalent.		5 bolia pair, 1 ione pair means the geometry is
483 (d)		401	square pyramiuar and $sp^{-}u^{-}$ hydriuisation.
Dipole forces exist only	y in polar molecule.	174	PCL molecule has $sn^3 d$ hybridiation
484 (b)			i eng morecure nuo op " a hybridiation.
			P a g e 89

Its geometry is trigonal bipyramidal and it has 5 504 (b) valence shell pairs of electrons. Be in BeF₃⁻ is sp^2 -hybridized 495 (c) 505 (c) Given, ionic charge = 4.8×10^{-10} esu and, ionic distance = $1 \text{ Å} = 10^{-8} \text{ cm}$ We know that $p_{y, \pi} \Delta p_{x, \mu}$ Dipole moment =ionic charge×ionic distance $= 4.8 \times 10^{-10} \times 10^{-8}$ paramagnetic in nature. $= 4.8 \times 10^{-18} \text{ esu cm}^{-1}$ 506 **(b)** = 4.8 debye A reason for the given fact. 496 **(b)** 507 (c) $CH_2 = CH_2$ has 1σ -and 1π -in between two sp^2 hvbridized carbon. 497 (c) solvent S in SF₄ possesses trigonal bipyramidal structure 509 (c) with sp^3d hybridisation. S in ground state but nuclear charge is more on Au. S in ground state 511 (d) 35 3n S in excited state 35 of nitrogen. 512 (a) 11 1 *sp*³ hybridised. $sp^{3}d$ hybridisation 513 (b) S in excited state bonding. 499 (c) H-bonding Atomic size decreases along the period and increases down the gp.

500 (d)

One water molecules is joined to four water molecules-two with H-atoms and other two with O-atoms. Thus, The maximum number of 514 (d) hydrogen bonds that a molecule of water can have is four as shown below :

501 (d)

 CH_3^+ and NH_2^+ both have 8 electrons.

503 (b)

Energy level order 2p > 2s.

RbO₂ means Rb⁺ and
$$0_2^-, 0_2^-$$
 is the superoxide ion.
 $0_2^-(17) = \sigma 1s^2, {}^*_{\sigma} 1s^2, \sigma 2s^2, {}^*_{\sigma} 2s^2, \sigma 2p_z^2, \pi 2p_x^2$
 $\approx \pi 2p_x^2 {}^*_{\sigma} 2p_z^2 \approx {}^*_{\sigma} 2p_x^1$

As it contains one unpaired electron, thus

Sulphanilic acids have dipolar structure to their melting point is high and insoluble in organic

Atomic size of Ag and Au are closer to each other

BCl₃ has trigonal planar structure due to 3 bond pairs in the valence shell of boron whereas NCl₃ has distorted tetrahearal structure due to one lone pair and three bond pair in the valence shell

In AlH₃, Al is sp^2 hybridised while in AlH₄, Al is

CH₃COOH dimerises in gaseous state due to H-

It is the definition of electron affinity.

516 **(b)**

 SO_2 has sp^2 -hybridization.

517 (a)

One of *s*-orbital +3 of *p*-orbital $= sp^3$

518 (d)
NO(7 + 8 = 15)
=
$$\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_z^2, \pi 2p_x^2$$

 $\approx \pi 2p_y^2, \pi^* 2p_x^1$
NO⁺(7 + 8 - 1 = 14)
= $\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_z^2, \pi 2p_x^2 \approx \pi 2p_y^2$
Thus, in the formation of NO⁺ from NO, the

electron is removed from a π^* orbital

519 (a)

2nd IE_1 of alkali metals is abnormally higher. 520 (c)

For $\text{Be}_n \text{Al}_2 \text{Si}_6 \text{O}_{18}$ 2n + 6 + 24 - 36 = 0n = 3

521 (a)

The structure of an hydride of H_2SO_4 is :

$$0 = \frac{1\sigma}{1\pi} S = 0$$
$$\frac{1\pi}{1\sigma} \begin{bmatrix} 1\pi \\ 1\pi \end{bmatrix} = 0$$

522 **(c)**

O atom possesses sp^3 -hybridization with two lone pair of electron.

523 (a)

Ionic bonds are non-directional.

524 **(b)**

The molecule of N_2O is linear as would be expected for a triatomic molecule with 16 outer shell electrons. Its resonance structure is

525 **(d**)

$$H - \frac{\sigma}{\sigma} = \frac{\sigma}{\sigma} =$$

Hence, number of σ and π -bond in acetonitrile are 5 and 2 respectively.

526 (a)

More the difference in electronegativity of atoms, stronger will be the hydrogen bond. Electronegativity difference between H and F is highest.

(∵F has highest electronegativity)

$$: F - H - - - - 0$$
 hydrogen bond is strongest.
527 (d)

Cyanide ion is,

$$-\overline{C}\equiv N \longrightarrow -\overline{N}\equiv C.$$

528 (a)

- 21. dsp^3 or sp^3d hybridisation results in trigonal bipyramidal geometry according to VSEPR theory.
- 22. *dsp*² hybridisation has square planar geometry.

23. d^2sp^3 or sp^3d^2 hybridisation has 537 (a)

octahedral planar geometry.

529 **(d)**

Bond angles of

0

$$NH_3 = 107^\circ, H_2Se = 91.0^\circ, H_2O = 104.5^\circ, H_2S$$

= 92.2°

So, the H_2 Se molecule has smallest bond angle. 530 **(a)**

The H H bond angle in H_2O is 104.5° due to the presence of two lone pairs of electrons. This fact can be best explained with the help of valence shell electron pair repulsion (VSEPR) theory.

- 531 **(b)**
 - $NO_2^ sp^2$ $NO_3^ sp^2$
 - $NH_2^ sp^3$
 - NH_4^+ sp^3 SCN⁻ sp

533 **(b)**

 $K^+[C \equiv N]^-$; K^+ and CN^- ionic, C and N forms covalent bonds.

534 **(c)**

NaCl exist as Na⁺Cl⁻.

535 **(c)**

 $\rm C_2H_2$ has a linear structure because it has sp hybridisation.

$$H - C \equiv C - H$$

536 **(d)**

Structure of C₂H₄ is

Geometry of the molecule)

So, the compound (X) is C_2H_4 .

Ionization energy increases along the period and decreases down the group.

538 **(b)**

The atomic radius decreases along the period. Also cations are always smaller than their parent atom and anions are always larger than their parent atom.

539 **(a)**

In N₂, all electrons are paired. Thus, N₂⁺ has one electron unpaired.

540 (c)

Mo lec ule	Hyb ridi sati on	Repulsion	Bond angle
S0 ₂	sp^2	lp.bp, bp – bp	119°
OH_2	sp^3	lp – lp, bp – lp bp – bp	104.5°
SH_2	sp^3	-do-	
NH ₃	sp^3	lp – bp, bp – bp	90°
-	-		107°

541 (a)

 CO_2 is isostructural with N_2O because both have 550 (c) linear structure. 2FC

$$0 \underbrace{=}_{CO_2} CO_2 O : N \underbrace{=}_{N^*} \underbrace{=}_{N^*} O : N \underbrace{=}_{N_2O} O : N \underbrace{=}_{N_2O}$$

542 **(c)**

Valencies of *L*, *Q*, *P* and *R* is-2,-1,+1, and +2 respectively. So, they will form P_2L , *RL PQ*, and *RQ*₂

543 **(b)**

NO → NO⁺ (NO⁺) Total e⁻ = 14 $\sigma 1s^2$, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\pi 2p_x^{1+1} = \pi 2p_y^{1+1}\sigma 2p_z^2$

Diamagnetic

Bond order = $=\frac{10-4}{2} = 3$ (NO) Total $e^- = 15$ $\sigma 1s^2 {}^*_{\sigma} 1s^2 \sigma 2s^2 {}^*_{\sigma} 2s^2$, $\sigma 2p_z^2 \pi 2p_x^{1+1} \pi 2p_y^{1+1}$, ${}^*_{\pi} 2p_x^1$ $= {}^*_{\pi} 2p_y$

Paramagnetic

Bond order = $=\frac{10-5}{2}=2.5$

Electron is taken away from non-bonding molecular orbital that's why bond order increases.

544 (a)

All are isoelectronic species; more is nuclear charge smaller is ionic size.

545 **(b)**

Bond order for $0_2=2$; $0_2^+=2.5$, $0_2^-=1.5$, $0_2^{2-}=1$ Thus bond length is $0_2^+ < 0_2 < 0_2^- < 0_2^{2-}$ 546 **(b)** The structure of acetylene is

$$H - C = C - H$$

In acetylene, both the C-atoms are *sp* hybridised. Hence in acetylene molecule, there are one sigma and two pi bonds are present between carbon atoms.

547 **(c)**

Size of isoelectronics decreases with increasing atomic number.

$$σ_2 :$$

 $σ_1s^2, σ^*1s^2, σ_2s^2, σ^*2s^2, σ_2p^2 \begin{bmatrix} π2p_y^2 \\ π2p_z^2 \end{bmatrix} \begin{bmatrix} π^*2p_y^2 \\ π^*2p_z^1 \end{bmatrix}$

∴ B.O. = $\frac{10-7}{2} = 1.5$

549 **(c)**

NO has 15 electrons (paramagnetic) whereas NO⁺ has 14 electrons (diamagnetic).

$$2Fe + 3[0] \rightarrow Fe_2O_3$$
 (rust).

551 **(d)**

 ClO_2 has 33 electron; one will be unpaired.

 NO_2 and O_3 both are having irregular geometry.

554 **(a)**

s character \propto bond angle

555 **(b)**

Since the two 0 atoms in O_2 are connected by a double bond (0 = 0), therefore, hybridization of 0 is sp^2

556 **(a)**

structure.

Cl - Be - ClIn BeCI₂, Be is *sp*-hybridised, hence it has linear

557 (c)

On fusion KCN, ionic bonding is disturbed; on boiling H_2S and CF_4 only kinetic energy of molecules increases.

558 **(a)**

Structure of $\overline{N}H_2$ is as follows

559 **(b)**

Mn²⁺ is most stable as it has half-filled *d*-orbitals. 560 **(c)**

The structure of PO_4^{3-} is $\begin{bmatrix} 0 \\ | \\ 0 - P - 0 \\ | \\ 0 \end{bmatrix}^3$

Here, there units negative charge is shared by four O atoms and five bond pairs are shared between four P-O bonds

- $\therefore \text{ Formal charge} = \frac{3}{4} = -0.75$ B0 of P - 0 bond = $\frac{5}{4} = 1.25$
- 561 **(c)**

The element is P which exists as P_4 .

562 **(b)**

Elements having six electrons in valency shell are electronegative elements, *e*.g., O.

563 (d)

In sulphur, the excitation of *np*-electrons to *nd*-subshell gives rise to increase in number of unpaired electrons.

564 **(b)**

(-)					
Spe	Elec	Electrons	Cha	Tot	
cies	tro	in other	rge	al	$\mathbf{\Lambda}$
	n in	element	gain		
	cent		ed	\mathbf{X}	
	ral				
	ele				
	me	C		P	
	nt				
BO ₃ ³⁻	5	$3 \times 8 = 24$	+3	32	
CO_{3}^{2-}	6	$3 \times 8 = 24$	+2	32	
NO_3^-	7	$3 \times 8 = 24$	+1	32	
SO_{3}^{2-}	16	$3 \times 8 = 24$	+2	42	
CN ⁻	6	7	1	14	
N ₂	7	7	0	14	
C_{2}^{2-}	6	6	+2	14	
PO_4^{3-}	15	$4 \times 8 = 32$	+3	50	
SO_4^{2-}	16	$4 \times 8 = 32$	+2	50	
	17	$4 \times 0 = 22$	11	50	

CIO₄ 17 $| 4 \times 8 = 32 | +1 | 50$ Thus, (b) SO₃²⁻, CO₃²⁻, NO₃ are not isoelectronic. 565 (c)

Unpaired electrons are present in KO_2 , while others have paired electrons.

 $NO_2^+ \rightarrow 22$ electrons

 $BaO_2 \rightarrow 72$ electrons

 $AlO_2^- \rightarrow 30$ electrons

 $KO_2 \rightarrow 35$ electrons

 $IP_3 > IP_2 > IP_1$

567 **(b)**

Coordinate bond is formed.

 $(C_2H_5)_2O \rightarrow BH_3$

 $(C_2H_5)_2O$ gives one lone pair of electron to BH₃. So, it is called electron pair donar and BH₃ is called electron pair acceptor.

568 **(a)**

BeF₃⁻ involves sp^2 -hybridization.

570 **(c)**

Maximum covalence in most of the atoms (except N, O, F) is given by the number of valency electrons. The paired *s* electrons are also get unpaired during excitation.

571 **(b)**

Noble gases are in zero group however they possess eight electrons in their valence shell.

572 **(a)**

Solid molecules possess stronger van der Waals' forces.

573 **(a)**

Inert pair effect is not noticed for elements having their outermost shell (n) if n < 4.

574 **(b)**

(a) **Pauling** gave scale of electronegativity.

(b) **Bronsted** gave concept of acid and base.

(c) Mullikan determined charge on electron.

(d) Lewis gave electronic theory of bonding.

575 **(b)**

Ionization potential increases along the period. Also Be has $1s^2$, $2s^2$, *i. e.*, removal of electrons from 2s while in Boron it occurs from 2p and therefore, Be has high I.P.

576 **(b)**

			П		
		σ-	Lone	Unpaired	Total
		bond	pair	electron	
	I.	3	×	×	$3(sp^2)$
	II.	2	×	×	2
	III.	4	×	×	(sp)
					$4(sp^{3})$
577	(b)				

Larger cation favours ionic bonding (Fajan's rule). 578 (b)

Only P has *d*-orbitals.

579 **(b)**

 H_2O is sp^3 -hybridized; BeF₂ is *sp*-hybridized.

580 (b)

Oxidising power: $F_2 > Cl_2 > Br_2 > I_2$.

581 (a)

NH₃ molecule in its valence shell has three bond pairs of electrons and one lone pair of electrons. The shape of NH₃ molecule is pyramidal due to the presence of one lone pair electron. It has sp^3 hybridisation.

582 (d)

All carbon to hydrogen bonds are σ -bonds

583 (b)

In C_2H_6 , C is sp^3 hybridised.

In C_2H_4 , C is sp^2 hybridised.

In BeCl₂, Be is *sp* hybridised.

In C_2H_2 , C is *sp* hybridised

584 (b)

Energy bonds in solids are formed in accordance 594 (d) with Bohr's theory.

585 (c)

The jump in ionisation energy occurs when valence shell changes during removal of electron.

586 (c)

H atom attached on F is responsible for Hbonding..

587 (a)

Bond length increases when bond order decrease, hence the correct order of bond length is $CO_3^{2-} > CO_2 > CO$

588 (a)

In PCl₃ molecule, phosphorus is sp^3 -hybridised 59 but due to presence of lone-pair of electron. It has pyramidal structure.

589 (c)

 $Be_2 = (8 \text{ electrons})$ $\sigma 1s^2 \sigma 1s^2 \sigma 2s^2 \sigma 2s^2$

590 (d)

 $sp^3 d^2$ hybridisation has octahedral structure such that four hybrid orbitals are at 90° w.r.t each other and others two at 90° with first four.

591 (b)

 IE_1 of N > IE_1 of O due to half filled nature in N. 592 **(b)**

Larger anion is easily deformed (Follow Fajans' rule).

593 (c)

Due to resonance structure of C_6H_6 .

Draw bond structure and then count bonds.

$$\begin{array}{c|c} \sigma & \sigma & \sigma \\ \hline \sigma & \sigma \\ H \hline 0 & P \\ \hline 0 & P \\ \hline \sigma \\ \sigma \\ \sigma \\ 0 \\ \hline \sigma \\ H \\ 0 \\ \hline \sigma \\ H \\ 0 \\ \hline 0 \\ \hline 0 \\ \hline H \\ 0 \\ \hline H \\ 0 \\ \hline 0 \\ \hline H \\ 0 \\ \hline 0 \\ \hline$$

595 (a)

In methane, ethene and ethyne, the hybridisations are respectively sp^3 , sp^2 and sp. Hence, % scharacter will be

$$sp^{3} = \frac{1}{4} \times 100 = 25\%$$

$$sp^{2} = \frac{1}{3} \times 100 = 33\%$$

$$sp = \frac{1}{2} \times 100 = 50\%$$

Both SO_4^{2-} and BF_4^{-} have sp^3 -hybridization and are tetrahedral.

598 (c)

If there is four σ – bonds, hybridisation is sp^3 , if three σ – bonds, hybridisation is sp^2 and if two

σ - bonds, hybridisation is *sp.*
(a)
$$CH_2 = C = CH_2$$

 $sp^2 sp sp^2$
(b) $CH_3 - CH = CH - CH_2^+$
 $sp^3 sp^2 sp^2 sp^2$
(c) $CH_3 - C \equiv C - CH_2^+$
 $sp^3 sp sp sp^2$
(d) $CH_3 - CH = CH - CH_2^-$
 $sp^3 sp^2 sp^2 sp^3$
(e) $CH_2 = CH - CH = CH_2$
 $sp^2 sp^2 sp^2 sp^2$
Hence, in $CH_3 - C \equiv C - CH_2^+$, all the three types of hybrid carbons are present.

599 (b)

Sigma bond formation involves more overlapping and thus stronger.

600 **(b)**

Both have sp^2 -hybridization geometry.

601 **(b)**

Anions are always larger than their parent atom. Also atomic radius increases down the group, decreases along the period.

602 (c)

AsF₅has sp³d hybridization. In sp^3d hybridization, it is d_{z^2} orbitals which takes part

603 (a)

CI CI compounds has CCl₄ and zero dipole moment due to their symmetrical structure.

604 **(b)**

Ionisation energy increases along the period.

605 (a)

In octahedral structure MX_6 , the six hybrid orbitals $(sp^3 d^2)$ are directed towards the corners of a regular octahedral with an angle of 90° . 616 (d) According to following structure of MX_6 the number of X - M - X bonds at 180° must be three.

It is the definition of valency.

607 (a)

Only Na shows +1 oxidation state. Rest all have +1, +2(Hg), +1, +2 (Cu) and +2, +3 (Fe) oxidation states.

608 (a)

The ionisation energy of elements decreases down the group.

609 (d)

O is more electronegative than C.

610 (c)

Bond energy increases with multiplicity of bonds.

611 (c)

Br₂ is a non-polar molecule and hence, its melting point and boiling point depend only upon van der Waals' forces of attraction while all the remaining molecules have dipole moments and hence, their melting points and boiling points depend upon dipole-dipole interactions

612 (c)

H-bonding in H₂O increases forces of attracting among molecules and develops abnormal properties.

614 (b)

In a double bond (=) one σ and one π -bond is present while in a single bond (-) only σ -bond is present.

The structure of the naphthalene is as

In naphthalene five double bonds are present, hence 5π bonds are present in naphthalene.

 ICl_2, I_3, N_3 are linear but

 ClO_2^- is angular due to sp^3 hybridisation of Cl aton

So, ClO_2^- is non-linear.

617 (c)

Bond order = $\frac{1}{2}$ [bonding electrons – antibonding electrons]

The difference of electronegativity is more.

619 (c)

	Ortho hydroxyl benzaldehyde has maximum		expected to be covalent			
	volatility due to intra molecular H-bonding.	634	(a)			
620	(b)		SiF ₄ and SF ₄ are not isostructural because SiF ₄			
	Formal charge = Number of electrons in valence		tetrahedral due to sp^3 hybridisation of Si while			
	shell –		SF_4 is not tetrahedral but it is distorted			
	$(\frac{1}{2} \times numbers of electrons as bond pair+numbers$		tetrahedral because in it S is sp^3d hybridised and			
	of electrons as long pair)		has a lone pair of electron.			
	of electrons as folie pair)	635	(c)			
			SiF ₄ has regular tetrahedral geometry.			
		636	(d)			
	For N_1 and N_3		Cl possesses 10 electrons in ClF_2 .			
	Formal charge = $5 - (\frac{1}{2} + 4) = 5 - (6) = -1$	637	(a)			
	For $N_2 = 5 - \frac{1}{2} \times 8 - 0 = 5 - 4 = +1$		Molec <i>bp</i> Hybridisa Shape			
621	(d)		ule + lp tion			
	In phenol each C atom is sp^2 hybridised and O		$H_2 U = 2 + 2$ sp ^o Angular Trigonal			
	atom is sp^3 hybridised.		$BCl_2 = 3 + 0$ sn^2 Planar			
622	(a)		NH_4^+ $4+0$ sp^3 Tetrahedral			
	Due to sp^3 -hybridization on carbon atoms.		CH_4 4+0 sp^3 Tetrahedral			
623	(b)	638	(c)			
	Bond angles of ClF_3 , PF_3 , NF_3 and BF_3 are (180°,		Electronegativity and ionisation energy decreases			
	90°), (101)°, (106°) and (120°) respectively.		from F to I.			
624	(c)	639	(d)			
	Operates in each gaseous molecule.		$CH \equiv CH$; 3 for triple bonds and two for C—H			
625	(d)	\sim	bond.			
	Resultant of two opposite vectors produces zero	640	(b)			
	dipole moment.		The electronic configuration of O_2^{2-} ion is			
626	(d)		0_2^{2-}			
	Because of its regular tetrahedral geometry, CCl_4		$-\sigma 1s^{2}, {}^{*}_{\sigma} 1s^{2} \sigma 2s^{2}, {}^{*}_{\sigma} 2s^{2}, \sigma 2p_{z}^{2}, \pi 2p_{x}^{2}, \pi 2p_{y}^{2}, {}^{*}_{\pi} 2p_{x}^{2},$			
	has least dipole moment		Hence, number of antibonding electron pair in			
627	(b)		O_2^{2-} molecular ion are four.			
	Coulombic forces are strongest among all.	641	(c)			
628	(a)		Due to the presence of d-subshell electrons.			
	CO_2 has linear structure. It has <i>sp</i> -hybridisation	642	(b)			
	0 = C = 0		Due to sp^2 -hybridization.			
629	(a)	643	(a)			
	In (A) para-nitro phenol intermolecular		M.O. configuration of O_2 :			
	(between two molecules) H-bonding exists while		$\sigma_{1s^{2},\sigma^{*}1s^{2},\sigma^{2}s^{2},\sigma^{*}2s^{2},\sigma^{2}p_{x}^{2}} = \frac{\pi^{2}p_{y}^{2}}{\pi^{*}2p_{y}^{2}}$			
	in (B) ortho –nitrophenol, intramolecular H-		$[\pi^2 p_z^2] [\pi^* 2p_z^1]$			
	bonding exists.		Molecular orbitals $\pi^* 2p_z$ gains electron when O_2^-			
	Because of the presence of intramolecular H-		is formed from O ₂			
6	bonding, the boiling point of (B) is lower as	644	(a)			
	compare to (A) and thus, (B) is more volatile $i.e.$,		H-bonding is weakest bonding.			
620	has higher vapour pressure as compare to (A).	646	(b)			
030	(U) Small cation has more polarizing neuror		Out of sp^3 , sp , sp^2 hybridised carbon, sp			
622	(c)		hybridised carbon is more electronegative.			
032	(b) Dolar soluto are more soluble in polar soluents	647	(c)			
600	(h)		Both NH_3 and H_2O have sp^3 -hybridization. CO_2			
033	(v) Since the electronegativity (EN) different is 2.0		and BeCl ₂ are linear (<i>sp</i> -hybridization).			
	12 - 18 which is loss than 10 therefore hand is	648	(d)			
	1.2 - 1.0, which is less than 1.7, therefore, bolid is		Unpaired electrons give rise to paramagnetism.			

649	(a)	666	(b)		
	HF has largest dipole moment because		Molecules	Interaction	
	electronegativity difference of both is high so, it is		Benzene and	Dispersion force	
	highly polar		ethanol	Dipole-dipole	
650	(b)		Acetonitrile and	lon-dipole	
	Due to H-bonding which is more in water than		acetone KCl and water	Dispersion	
	alcohol and not in ether.		Renzene and		
652	(c)		carbon		
	$1s^2$, $2s^22p^4$ leads a sharing of two electron pairs		tetrachloride		
	to form molecule, $e. g., O_2$.	667	(b)		
654	(b)		Dry ice is CO ₂ having	C—O covalent bond	ds.
	Count σ and π bonds.	668	(d))
655	(c)		,CI CI		
	Bond order $C_2^- > NO > O_2^- > He_2^+$		f(x) = x		
	3 5/2 3/2 1/2			x	
656	(b)				
	Larger is bond order, lesser is bond length.				
657	(c)		$\mu = 0 \qquad \qquad \mu = \sqrt{3x}$	$\mu = x$	
	Strongest H-bonds are formed in between HCOOH		In p-dichlorobenzene	, two C – Cl dipole (cancel
	and CH ₃ COOH. This is because H- bonding		each other		
	increases with electronegativity and decreases		$\therefore \mu = 0$		
	with size of atom		In, o-dichlorobenzene	e, two C – Cl dipoles	s (say x)
658	(d)	1	are inclined at an ang	le of 60°.Therefore,	
	BCl_3 has sp^2 -hybridization. Rest all have sp^3 -	$\boldsymbol{\mathcal{C}}$	according to parallelo	gram law of forces,	the
	hybridization having one lone pair of electron and		resultant		
	thus, pyramidal in nature.	\mathcal{P}	$=\sqrt{x^2+x^2+2x\times co}$	os 60°	
659	(d)	*	$-\sqrt{x^2 + x^2 + 2x^2 \times x^2}$	1/2	
	The overlapping orbitals must possess half-filled		$-\sqrt{x}$ 1 1 2 1 1 1 1 1 1 1 1 1 1	1/2	
	nature with anti-spin electron.		$= \sqrt{3x^2} = \sqrt{3x}$		
661	(c)		in <i>m</i> -dichlorobenzene	e, the two dipoles al	re
	HNO_3 is $HO-N=O$, assume one covalence		therefore, regultant	at all aligie of 120	,
	fan aande aandinate kentd		$= \sqrt{x^2 + x^2 + 2x} \times cc$	120°	
(())	for each coordinate bond.		$= x^{2} + x^{2} + 2x^{2} \times (-$	-1/2)	
662	(a) De of II, is minimum		$=\sqrt{x^2}=x$		
662	$\mathbf{B}_{2}, \mathbf{O}_{1} = \mathbf{B}_{2}$		Thus ,the decreasing	order of dipole mor	nents:
005	[d]		o > m > p		
	shape	669	(d)		
664	(h)		One carbon has three	bonds and other fiv	ve where
004	Electron gain anthalny of Cl is maximum		as each should have for	our bonds.	
665	(a)	670	(c)		
005	The structure of trimethyl amine is nyramidal		Cations are smaller in	i size than their par	ent
			atoms.		
	(••)	671	(b)		
	\vee		$0_2(8+8=16)$	*0 2 0 2 0 2	
	N		$=\sigma_{1s^{2}}, \sigma_{1s^{2}}, \sigma_{2s^{2}}, \sigma_{$	$\sigma^2 ZS^2, \sigma^2 p_z^2, \pi^2 p_x^2$	
			$\approx \pi 2 p_y^2, \pi^2 2 p_x^1 \approx \pi^2 2$	p_{y}	
	H ₃ C CH ₃		Bond order = $\frac{10-6}{2}$ =	2	
			$0_2^+(8+8-1=15)$		
	С Н ₃				

Bond order= $\frac{10-5}{2} = 2.5$ $O_2^-(8+8+1=17)$, Bond order = $\frac{10-7}{2} = 1.5$ $O_2^{2-}(8+8+2=18)$, Bond order = $\frac{10-8}{2} = 1$

Thus, bond order is maximum for 0^+_2

672 **(d)**

P atom has sp^3 -hybridization with one position occupied by lone pair of electron.

673 **(b)**

A characteristic of resonance.

674 **(b)**

Covalent compounds have lower m.p. and b.p. than ionic one.

676 **(d)**

It is a reason for given fact.

677 **(b)**

 ClO_3^- has sp^3 -hybridization with one lone pair of electron.

678 **(d)**

Greater the stability of oxide, greater is the case of its formation. Generally ionic oxides are more stable than covalent oxides and among the given metals only Ca form ionic oxide. Hence, Ca has greater tendency to form oxide.

679 **(c)**

Higher the charge/size ratio, more is the polarising power. $K^+ < Ca^{2+} < Mg^{2+} < Be^{2+}$

680 **(d)**

He has $1s^2$ configuration.

681 (a)

Water molecules has following structure

/

Therefore, there are 4 pairs of electrons (2 lone pairs and 2-bond pairs) in the valence shell of 0-atom in water molecule.

682 **(a)**

Total electrons in valence shell of nitrogen and hydrogen.

 $\mathrm{H} \times_{\bullet} \overset{\bullet}{\mathrm{N}} \bullet \times \mathrm{H}$

∴ Total electrons in NH₃=5+1+1+1=8 683 (**d**)

The electronic configuration of carbon is $1s^2$, $2s^22p^2$.

684 **(c)**

Number of hybrid orbitals = no. of bp + no. of lp= 5 + 1 = 6

Thus, hybridization is sp^3d^2 but geometry, due to the presence of one pair, is square pyramidal, *ie* F

$$F \xrightarrow{90^{\circ}} F$$

685 **(c)**

(i)N₂ (14 electrons)
=
$$KK^*, \sigma 2s^2, \sigma 2s^2, \pi 2p_x^2 \approx \pi 2p_y^2, \sigma 2p_z^2$$

Bond Order = $\frac{1}{2}(N_b - N_a)$

$$=\frac{1}{2}(8-2)=3$$

(ii) \overline{N}_2^+ (13 electrons) = KK^* , $\sigma 2s^2$, $\sigma^2 2s^2$, $\pi 2p_x^2 \approx \pi 2p_y^2$, $\sigma 2p_z^1$

Bond Order = $\frac{1}{2}(7-2) = 2.5$

Since, bond dissociation energy \propto bond order. Hence, bond dissociation energy of N₂ is greater than that of the bond dissociation energy of N₂⁺.

686 **(c)**

Bond angles in $BeCl_2$, NH_3 , H_2O and $SnCl_2$ are 180°, 107°, 104.5° and 119° respectively. Also H_2S , H_2O , H_2Se has sp^3 -hybridization and bond angles of hydrides decreases down the group.

687 **(d)**

LiquidHCl does not from H-bonds

688 **(a)**

 O_2 has two unpaired electrons but are paired in O_2^{2-} .

689 **(b)**

In ethanol the oxygen of – OH group is bonded to the sp^3 hybridised carbon by a sigma bond. The C – O – H bond angle in ethanol is less than the tetrahedral angle (109°, 28″) due to larger repulsions between the lone pair of repulsions between the lone pairs of oxygen. Hence, it is 104° in ethanol.

$$H_3C$$
 H_3C H_3C H_3C H_4 H_3C H_4 H_4

690 **(c)**

Acetonitrile does not contain sp^2 hybridised carbon.

691 **(b)**

The atomic radii decreases along the period and increases down the gp.

692 **(b)**

 SiO_2 possesses giant molecular structure due to tetra valence and catenation nature of Si.

693 **(d)**

According to VSEPR theory the bond angle decreases with increase in the size of the valence shell of the central atom because electronegativity decreases. *i. e.*, decreasing order of bond angles is $NH_3 > PH_3 > AsH_3 > SbH_3$

694 **(b)**

Half-filled orbitals are more stable.

695 (a)

In BrF₅ number of electrons = 6 (1 lp +5 bp)

So, the structure is supposed to be square pyramidal but will be distorted because of additional *lp-bp* interaction.

Additional *lp-bp* interaction reduced the all bond angle and do not let any angle to be 90°.

696 **(b)**

Ionisation energy decreases down the group and increases along the period.

697 **(a)**

Smaller is size of anion, lesser is its polarization, more is ionic nature, more is lattice energy.

698 **(c)**

699 (a)

Among the given species, the bond dissociation energy of C – O bond is minimum in case of CO_3^{2-} by which C – Obond become more weaker in CO_3^{2-} or the bond order of $CO_3^{2-}(1.33)$ is minimum so, the bond become weaker Peroxide ion in O_2^{2-} $O_2^{2-}(18) = \sigma 1 s^2, \ _{\sigma} 1 s^2, \ _{\sigma} 2 s^2, \ _{\sigma} 2 s^2, \sigma 2 p_z^2$ $\pi 2 p_x^2 = \pi 2 p_y^2, \ _{\pi} 2 p_x^2 = \ _{\pi} 2 p_y^2$ $N_k = N_a - N_a - 10^{-8}$

Bond order $=\frac{N_b - N_a}{2} = \frac{10 - 8}{2} = 1$

It contains four completely filled antibonding molecular orbitals. Since, all the electrons are paired, $O_2^{2^-}$ is diamagnetic.

Peroxide ion is isoelectronic with argon, not with neon.

701 **(b)**

702 (b)

 $\begin{array}{cccc} {\rm BF}_3:sp^2 & {\rm NO}_2^-:sp^2 & {\rm NH}_3:\\ sp^3 & {\rm NH}_2^-:sp^3 & {\rm H}_2{\rm O}:sp^3 \end{array}$

Multiplicity in bonds decreases bond length.

703 (a)

$$O_2^{2^-}$$
 (Total number of electrons =18)
 $\sigma 1s^2$, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\sigma 2p_z^2$, $\pi 2p_x^2 = \pi 2p_y^2 {}^*_{\pi} 2p_x^2$
= ${}^*_{2} 2n^2$

704 **(d)**

Inclined at 72° with one each other seven sp^3d^3 hybrid orbitals forming σ - bonds with F-atoms,

Pentagonal bipyramidal structure

705 (b)

ABCDE plane

In C₂, only 2π bonds are present 706 **(b)**

NH₄⁺ has angle of 109°28'.

$$\frac{1}{2} \text{Cl}_2(\text{g}) \rightarrow \text{Cl}^-(aq)$$

$$\Delta H = \frac{1}{2} \Delta H_{\text{diss}}(\text{Cl}_2) + \Delta H_{\text{EA}} \text{Cl} + \Delta H_{\text{hyd}}(\text{Cl}^-)$$

$$= \frac{240}{2} - 349 - 381$$

$$= -610 \text{ kJ mol}^{-1}$$

708 (b)

The position at which substituent is present, is called *ipso*-position.

Chlorobenzene

The hybridisation of ipso-carbon in chlorobenzene is sp^2 .

709 (c)

Electronegativity difference between N (3,0) and Cl (3.0) is zero and hence, N - Cl bonds are nonpolar. As a result, the overall dipole moment of NCl₃ molecule and its direction is just the dipole moment of the lone pair of electrons

On the other hand, N - Br, (3.0 - 2.8), N - I(3.0 - 1)2.5) and N – H (3.0 - 2.1) are polar and hence, contribute towards the overall dipole moment of the respective moleculas. Since, the EN difference is higher in case of N – H bonds, therefore, NH₃has the higher dipole moment

710 (c)

CHCl₃ molecule has largest dipole moment among the given species.

711 (d)

In O₂, there are two electrons in antibonding orbitals. Removal of one electron from the O_2 molecular gives O_2^+ in which the number of antibonding electrons is one less and hence, BO increases. Thus, removal of the electron from 0₂stabilized the molecule

712 (a)

 Mg^{2+} is a smaller cation in these. Smaller is cation 722 (a) more is hydration energy.

713 (b)

Hydrogen bonding \propto electronegativity

- 714 (c) Larger is anion, more is its polarization.
- 715 (c)

NaF is more ionic; F is smallest anion among all and thus, least polarized.

716 (a)

$$H \xrightarrow{\sigma} C \xrightarrow{\sigma} H \text{ and } 2\pi$$

Hence, In acetylene, there are 3 σ and 2 π bond.

717 (d)

+4 ionic state is not possible for head with iodide because I⁻ reduces Pb⁴⁺ to Pb²⁺.

718 (a)

The C – C bond length in sp^3 hybridisation is greater than sp^2 hybridisation due to large size of *p*-orbitals.

In diamond sp^3 hybridisation is present while in graphite, naphthalene and fullerene sp^2 hybridisation is present therefore the C - C bond length is maximum in diamond.

720 (d)

SiO₂ structure is definite.

721 (a)

We know that the shape of IF_7 (molecule) is

pentagonal bipyramidal because central atom I have sp^3d^3 hybridisation.

723 (a)

- C C bond length = 1.54 Å
- C = C bond length = 1.34 Å
- $C \equiv C \text{ bond length} = 1.20^{\circ} \text{ Å}$

Thus, correct decreasing order C to C bond lengths is

IV > III > I > II

724 **(b)**

Due to larger difference in electronegativity.

725 (d)

Both O and S belong to same group but H_2O is a liquid whileH₂S is a gas. This can be explained on the basis of electronegativity. In water due to the high electronegativity of oxygen hydrogen bonds are formed. As a result the molecules of H_2O get associate together, hence water exists as a liquid at room temperature. On the other hand, the |730 (b) electronegativity of S is less and therefore, hydrogen bonding in H₂S is almost negligible. As a result of which molecules of H_2S are not 731 (c) associated and H₂S exsists as a gas at room temperature.

726 (d)

S = C = S.

727 (d)

The bond angles in sp^3 , sp^2 and sp-hybridization are 109°, 120° and 180° respectively.

728 (d)

In ClO_3^- , Cl is central atom, it is sp^3 hybrid and on 732 (c) lone electrons it one pair of (free pair of electrons) is present.

Pyramidal shape

In XeF₄, Xe is central atom it is sp^3d^2 hybrid and on it two lone pair of electrons are present.

Square planar

In SF₄, S is central atom and sp^3d -hybridised and

it lone of electrons on one pair is present.

Irregular tetrahedral

In I_3^- , I is central atom and it is sp^3d hybridised and on it three lone pair of electrons are present.

Linear shape

Seven atoms of fluorine are covalently bonded with iodine.

Intermolecular hydrogen bonding is found in $(HF)_n$ due to higher electronegativity of fluorine atoms.

Hydrogen bonding

Hydrogen bonding is helpfull in the association of HF molecule, so HF is found in liquid form.

A species is said to be diamagnetic if it has all electrons paired

Sp eci es	El ect ro ns	MO electronic configurati on	Magnetic behaviour
H_2^-	3	$\sigma 1s^2 \frac{s}{\sigma} 1s^1$	Paramagnetic
H_2^+	1	$\sigma 1s^1$	Paramagnetic
H_2	2	$\sigma 1s^2$	Diamagnetic
	2	4 2 * 4 1	D

733 (b)

This give rise to polarity in bonds.

734 (c)

First electron affinity is energy releasing process. 735 (b)

 $Li^{-}: 1s^{2}, 2s^{2}; Be^{-}: 1s^{2}, 2s^{2}, 2p^{1}; in Li, addition$ of electron has taken place in 2s orbital; in Be⁻, addition of electron has taken place in 2p orbital loosing its 2s completely filled configuration. EA_1 for Be is more positive than EA_1 for Li. Thus Be⁻ is least stable.

736 (d)
Bod energy for C--C, N--N, H--H and O--O are:
H-H S-C-C > N-N > O--O.
737 (b)
The number of lone pair in XeOF₄ is one (1). The
structure of XeOF₄ is given as follows

$$F = \frac{1}{2} + \frac{1}{2$$

750 (d)

Bond energy ∝ Bond order

751 (a)

In XeF₆, the oxidation state of Xe is +6. The shape of XeF₆ should be pentagonal bipyramid due to sp^3d^3 hybridisation but due to the presence of one lone pair at one *trans* position its shape becomes distorted octahedral.

octahed shape

752 (a)

 CN^{-} and NO^{+} both have same number of electrons and same bond order (3).

753 **(b)**

Bond length $\propto \frac{1}{\text{bond order}}$

754 **(c)**

 sp^3 -hybridization leads to tetrahedral geometry. 756 **(b)**

Alkali metals are most electropositive elements. 757 **(b)**

Anions are always larger than parent atom;

cations are always lesser than parent atom.

Total number = $4 \rightarrow sp^3$ hybridisation

SF₄:

Total number = $5 \rightarrow sp^3 d$ hybridisation

Total number = $6 \rightarrow sp^3 d^2$ hybridisation 759 (a)

Van der Waals' forces increases in CH₄ to give solid CH₄.

760 **(b)**

As the number of lone pairs of electrons increases, bond angle decreases. Thus, the order of bond angle is

 $\mathrm{NH}_4^+ > \mathrm{NH}_3 > \mathrm{NH}_2^-$

(no *lp*) (1 *lp*) (2*lp*) 761 **(b)**

$$BeCl_2 - sp, BF_3 - sp^2; NH_3 - sp^3; XeF_2 - sp^3d$$

762 **(a)**

Cl - P - Cl bond angles in PCl_5 molecule are 120° and 90°. PCl_5 , having sp^3d hybridised P atom (trigonal bipyramidal geometry) has two types of bonds; axial and equatorial. The two types of bond have different bond lengths 1, 2, 3 and 4 equatorial bonds and 4, 5 axial bonds.

763 **(b)**

Both BF_4^- and NH_4^+ have sp^3 -hybridisation and therefore possess tetrahedral geometry.

Each possesses 18 electrons.

766 **(d)**

$$\begin{aligned} \text{He}_2^+(\text{B}.\,0. = 0.5) < 0_2^-(\text{B}.\,0. = 1.5) \\ < \text{NO}(\text{B}.\,0. = 2.5) < \text{C}_2^{2-}(\text{B}.\,0. \\ = 3.0) \end{aligned}$$

768 (d)

In SO₃ molecules, S-atom remains sp^2 hybrid, hence, it has trigonal planar structure

sp³hybridisation

 $BCl_3 = 3\sigma \text{ bonds} + 0lp \text{ of } e^- = 3 \Longrightarrow$ *sp*²hybridisation $\text{NCl}_3 = 3\sigma \text{ bonds} + 1lp \text{ of } e^- = 4 \implies$

771 (b)

N is sp^2 -hybridized in NO₃.

772 (d)

The ionic radius increases down the group.

773 (b)

The formula of MX_3 shows the presence of 3σ bonds. Since, it has T-shape geometry, it must contain 2 lone pairs as

774 (a)

Except NO⁻ (16 electrons), rest all have 14 electrons.

776 (c)

Ethyl alcohol forms stronger H-bonds than greater 784 (b) ethylamine or ammonia due to electronegativity of oxygen than nitrogen atom. Diethyl ether, however, does not form H-bonds since, it does not have a H-atom attached to Oatom.

778 (c)

Carbon in CO₂ has *sp*-hybridization.

779 (c)

In both CH_4 and CCl_4 , sp^3 hybridisation is present and both have tetrahedral geometry.

781 (a)

As the *s*-character increases in hybrid orbitals, bond energy increases, size of the hybridized orbital decreases. s-characters in sp, sp^2 and sp^3

are 1/2, 1/3, 1/4 respectively.

782 (b)

NH₄Cl contains ionic, covalent and coordinate linkage.

The Born-Haber cycle takes place as follows

Hence, Z is
$$M^+ X^-(s)$$

785 **(a)**

S atom is larger in size than O and F.

N₂(7 + 7 = 14) =
$$\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \pi 2p_x^2$$

 $\approx \pi 2p_y^2, \sigma 2p_z^2$
Bond order = $\frac{10-4}{2} = 3$
N₂⁺(7 + 7 - 1 = 13)
 $= \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \pi 2p_x^2$
 $= \pi 2p_y^2, \sigma 2p_\pi^1$ (paramagnetic)

Bond order $=\frac{9-4}{2} = 2.5$ Since, N_2^+ has less bond, then N – Nbond gets weak $O_2(8 + 8 = 16)$ $= \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_z^2, \pi 2p_x^2$ $\approx \pi 2p_y^2, \pi^* 2p_x^1 \approx \pi^* 2p_y^1$ Bond order $= \frac{10-6}{2} = 2$ $O_2^+(8 + 8 - 1 = 15)$ $= \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_z^2, \pi 2p_x^2$ $\approx \pi 2p_y^2, \pi^* 2p_x^1$ Bond order $= \frac{10-5}{2} = 2.5$ Thus, in the formation of O_2^+ from

O₂, paramagnetism decreases but the bond order increases

787 (a)

In an antibonding molecular orbital, most of the electron density is located away from the space between the nuclei, as a result of which there is a nodal plane (*i.e.*, a plane at which the electron density is zero) between the nuclei.

788 (d)

)
	Speci	Hybridisa	Lone	Bondin	
	es	tion of Xe	pair on	g pairs	
			Хе	\mathbf{V}	
(a)	XeO ₃	sp^3	1	3	
(b)	XeF ₄	sp ³ d ²	2	4	
(C)	XeF ₆	sp^3d^3	1	6	
(d)	XeF ₂	sp^3d	3	2	
	_		(Max.)		

789 **(b)**

Boiling point of HF is highest due to H-bonding. For other halogen acids boiling point increase in the order HCl < HBR < HI. Therefore, most volatile (with Lower b.pt.) is HCl.

790 **(b)**

The MO electronic configuration of O_2^- (8 + 8 + 1 = 17) = $\sigma 1s^2$, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\sigma 2p_z^2$, $\pi 2p_x^2$ $\approx \pi 2p_{y,\pi}^2 2p_{x,\pi}^2 \approx {}^*_{\pi} 2p_y^1$ Bond order = $\frac{N_{b-N_a}}{2}$ = $\frac{10-7}{2} = 1.5$

791 (d)

792 (a)

Multiplicity in bonds decreases bond lengths.

Both NH_4^+ and BF_4^- have sp^3 -hybridization.

793 (a)

 NH_3 molecule has three fold axis of symmetry because it has sp^3 hybridisation but due to presence of one lone pair of electron it has pyramidal structure.

794 **(b)**

Basic character of hydrides decreases down the

gp. 795 **(b)**

NO is paramagnetic in nature

796 **(d)**

Cation radius increases down the group.

797 **(a)**

According to Born-lande equation

$$U = \frac{Z^+ Z^- e^2 \operatorname{An}}{r_{\text{node}}} \left(\frac{1}{n} - 1\right)$$

Where , U is lattice energy r_{node} is interionic distance

 $U \propto \frac{1}{\text{interionic disance}}$

 \therefore Ions should be of small size to have high lattice energy.

798 **(d)**

Dipole moment of CH₃OH is maximum in these.

799 **(b)**

Intermolecular H-bonding gives rise to an increase in b.p.

800 **(b)**

H₃BO₃ has structure

Boron has three bonds thus sp^2 hybrdised. Each oxygen has two bonds and two

801 **(d)**

Species having same hybridisation show similar geometry.

 SO_4^{2-} :Hybridisation of S $\longrightarrow sp^3$

 ClO_4^- :Hybridisation of $Cl \rightarrow sp^3$

802 **(c)**

Anions are larger in size than their parent atom.

803 (c)

Na⁺ and Cl⁻ are formed.

804 **(b)**

: $-CH_3$ has sp^3 hybridisation.

Glycerol and ethanol both have intermolecular 816 (a) hydrogen bonding but in glycerol (CH₂OH. CHOH. CH₂OH) hydrogen bonds per molecule is more than ethanol (C_2H_5OH). It increases attraction between the molecules and hence, glycerol is more viscous than ethanol.

806 (a)

Larger anion is more polarised.

807 (a)

In $_{\pi 2P_x}^*$ orbital, two nodal planes are present.

808 (d)

Hydrogen bond is formed between molecules of compounds having O, F and N with H.

CH₂OH

CHOH

ĊH₂OH glycerol (b)

(d)

H-----F hydrogen fluoride hydrogen sulphide (c)

: H₂S does not have O, F or N.

∴ It does not form hydrogen bond

810 (a)

NaF has maximum melting point, melting point decreases with increases in size of halide ion and their bond energy get lower

811 (a)

s-orbitals never go for lateral overlapping because of non-directional nature.

812 (d)

The metallic character is found in iodine as well as 821 (c) in astatine (At). Note that metallic character increases down the group.

813 (b)

Ionization energy increases along the period and decreases down the group. Also (b) has [Ne] $3s^2$, $3p^3$, *i.e.*, half filled configuration, being

more stable and thus, have high ionization energy.

814 (a)

The correct option is O_2^{2-} . This species has 18

electrons, which are filled in such a way that all molecular orbitals are fully filled, so diamagnetic. $\sigma 1s^2 {}^*_{\sigma} 1s^2$, $\sigma 2s^2 {}^*_{\sigma} 2s^2 \sigma 2p_z^2$, $\pi 2p_x^2 = \pi 2p_y^2$, ${}^*_{\pi} 2p_x^2 =$ $^{*}_{\pi}2p_{\nu}^{2}$

815 (a)

Water is an universal solvent.

According to Fajan's rule, as the charge on cation increase its size decreases. As a result its tendency to polarise anion increases. This brings covalent character more and more to electrovalent compounds.

· Among AlCl₃, LaCl₃, MgCl₂ and CsCl size

of Al³⁺ is smallest.

 \therefore Al³⁺ polarises anion to highest extent.

∴ AlCl₃ has maximum covalent character.

817 (a)

 C_6H_6 has regular hexagonal geometry.

818 (c)

SF₆ has six S–F bonds.

819 (a)

Resonating structure can be written only for such molecules in which multiple bonds are presents, $eg, 0_3$

820 (d)

According to Born-Haber cycle the enthalpy of formation (ΔH_f) of an ionic compound may be given as

$$\Delta H_f = S + \frac{1}{2}D + I + E + U$$

Where, I = ionisation energy

S = sublimation energy

E = electron affinity

D = dissociation energy

U = lattice energy of compound

Born-Haber cycle is used to determine the lattice energy of the compound. It also may be used to calculate electron affinity of an element.

Element *C* has electronic structure $1s^2$, $2s^2$, $2p^5$, it requires only one electron to complete its octet and it will form anion so it will form electrovalent bond

822 (a)

H atom has 1s¹ configuration. Shielding effect is property of penultimate shell electrons.

 NO_2^+ : The species is linear with *sp*-hybridisation.

$$O = \underset{sp}{\overset{+}{\underset{N}{=}} O}$$

 NO_3^- : The species is trigonal planar with sp^2 -hybridisation.

$$\bar{O}_{sp^2}N$$

 NH_4^+ : The species is tetrahedral with sp^3 -hybridisation.

Both C and N⁺ have six electrons.

825 **(a)**

According to Fajans' rule, polarization of anion is influenced by charge of cation, size of cation. More is the charge on cation, more is polarization of anion.

826 **(b)**

Smaller cation causes more polarization of anion.

827 **(a)**

Bond order = $\frac{1}{2}$ [no. of bonding electrons-no. of antibonding electron]

828 **(c)**

Pauling work on chemical bonding.

829 **(a)**

All have linear structure $0 = C = 0, Cl - Hg - Cl, H - C \equiv$

830 (d)

A characteristic of metallic bonding.

831 **(a)**

Due to larger differences in electronegativity. 833 **(b)**

SF₄ has sp^3d –hybridization. Rest all have sp^3 -hybridization.

834 **(a)**

NO has 15 electrons.

835 **(d)**

Ti⁺ has 21 electrons in it. Rest all have 10 electrons.

836 **(a)**

 0_2^- has one unpaired electron.

837 **(a)**

Structure of ammonia is pyramidal (Distorted from tetrahedral to pyramidal due to repulsion between lone pair and bond pair of electrons).

838 **(b)**

 Cl_2 involves 3p - 3p overlapping.

- 839 **(b)**
 - Only Sulphur has *d*-orbitals.
- 840 **(c)**

 ClO_4^- has sp^3 -hybridization on Cl atom.

841 **(d)**

Due to dipole moment intermolecular forces of attraction becomes stronger and thus, liquefaction becomes easier.

842 **(d)**

 sp^3d -hybridisation leads to trigonal bipyramidal geometry if no lone pair is present, *e.g.*, PCl₅; in ClF₃ geometry is T-shaped due to the presence of two lone pair of electron. In XeF₂, geometry is linear due to the presence of three lone pair of electrons.

843 **(a)**

Due to the presence of lone pair on N atom.

844 **(a)**

 B_2 : Total electrons = 10

Configuration : $\sigma 1s^2 {}^*_{\sigma} 1s^2 \sigma 2s^2 {}^*_{\sigma} 2s^2 \pi 2p_x^1 = \pi 2p_y^1$ If Hund's rule is violated, then $\sigma 1s^2 {}^*_{\sigma} 1s^2 \sigma 2s^2 {}^*_{\sigma} 2s^2 \pi 2p_x^2 = \pi 2p_y^0$

So, diamagnetic

Bond order
$$=\frac{6-4}{2}=1$$

845 **(a)**

Bonding molecular orbitals possess lower energy levels than antibonding orbitals.

846 **(a)**

Be²⁺ is smallest and Na⁺ has largest radius.

847 **(b)**

Hydrogen bond is strongest in HF due to higher electronegativity of F.

848 **(d)**

The structure of H_2O is angular V-shape and has sp^3 - hybridisation and bond angle is 105°. Its dipole moment value is positive or more than zero.

But in BeF₂ , structure is linear due to *sp*-hybridisation ($\mu = 0$). Thus, due to $\mu > 0$, H₂O is dipolar and due to $\mu = 0$, BeF₂ is non-polar.

849 (d)	3s $3p$		
These are factors on which effective nuclear	P: 1 1 1		
charge depends.	······································		
850 (a)	$(sp^3)^2$ $(sp^3)^1$ $(sp^3)^1$ $(sp^3)^1$		
5(on P) + 4(on H) - 1 = 8.			
851 (b)	3p of 3p of 3p of		
Phosphoric acid has 3 – OH groups, which are	Cl Cl Cl		
involved in hydrogen bonding .	859 (c)		
The type of hydrogen bonding, found , is	N atom in $\rm NH_3$ provides electron pair to $\rm H^+$ to		
intermolecular. Due to this, it is syrupy.	form coordinate or dative bond ($H_3N \rightarrow H$).		
852 (c)	861 (d)		
The bond angles are H_2S NH_3 SiH_4	Due to H-bonding, $V_{ice} > V_{water}$.		
BF ₃	862 (b)		
92.6° 107° 109°28′	The covalent compounds have low melting point		
120°	due to weaker forces of attraction among them as		
853 (b)	compared to strong forces of attraction in ionic		
The metals have low ionization energy. In a piece	compounds.		
of metal many free electrons are found which	\therefore HCl is covalent compound among CsF, HCl HF		
move form one atom to other. The presence of	and Li		
mobile electrons or oscillation of loose electrons	(CsF, HF and LiF are ionic compounds)		
are responsible for metallic lusture.	∴ HCl has minimum boiling point.		
854 (c)	863 (b)		
Same spin electrons in two atoms do not take part	(i) Hybridisation $=\frac{1}{2}$ (no. of e^- in valence shell of		
in bonding.	central atom + no. of monovalent atoms +		
855 (b)	charge on anion – charge on cation)		
Molecule Hybridisation			
SO_3 Sp^2	(ii) Shape or geometry of molecule depends on		
C_2H_2 Sp C.H. Sp^2	lone pair and bond pair of electrons present in it.		
C_{H_4} S_p^3	Hybridisation of		
CO_2 Sp			
Hence, the hybrid state of S in SO_3 is similar to	N in NH ₃ = $\frac{1}{2}$ (5 + 3 + 0 - 0) = 4		
that of C in C_2H_4 .	2		
856 (d)	$\therefore sp^3$ hybridisation.		
IO_3^- , XeO ₃ , (<i>sp</i> ³ hybridisation) pyramidal			
PF_6^- , SF_6 (sp^3d^2) octahedral	• It has 3 bond pair and 1 lone pair of electrons,		
BH_4^- , NH_4^+ , SiF_4 (sp^3) tetrahedral	so it has distorted tetraneuron shape.		
CO_3^{2-} (sp ²) trigonal planar	864 (d)		
NO_3^- (sp ²) trigonal planar	24. The bond angle decreases with decrease		
$SF_4(sp^3d)$ see – saw	in electronegativity. It results in decrease		
Hence, SiF_4 and SF_4 are not isostructural (same	in repulsion between bond pair-bond pair		
structure).	electrons and bond angle becomes		
857 (b)	smaller.		
\checkmark PCl ₃ has sp^3 -hybridisation and possesses one			
lone pair on P-atom and three bond pair of	25. Between NH ³ and H_2O , H_2O has smaller		
electron	bond angle due to presence of two lone		
	pair of electrons causing more repulsion		
	among electrons as compared of NH ³		
	which has only one lone pair of electron.		

Hydrides
	NH ³ H ₂ O H ₂ S H ₂ Se H ₂ Te		= 6.12 D
			Percentage ionic character
	Bond angles		=
	107° 105° 92° 91° 90°		observed dipole moment
			theoretical value of dipole moment × 100
	H ₂ Te has smallest bond angle.		$=\frac{1.03}{100} \times 100 = 16.83\%$
		074	6.12
865	(a)	8/4	
	In ionic solids, ions exist at lattice points. In		Double bond involves the sharing of two electron
	covalent solids atoms lie at lattice points.		pairs or four electrons.
866	(c)	875	(b)
	In structure (c), all the atoms have complete octet.		There are 16 P – O bonds in P_4O_{10} .
	Thus, it is the correct representation of carbon	876	(a)
	suboxide		Difference of electronegativity > 1.7 produces
867	(h)		ionic compound.
007	Smaller is atom more is energy needed to remove	877	
	sinaner is atom, more is energy needed to remove	0//	(a) It is a concept
	electron, <i>i. e.</i> , ionisation energy. Also removal of	070	
	two electrons needs more energy.	8/8	(a)
868	(d)		Low ionisation potential indicates that element
	Born-Haber cycle inter-relates the various energy		can easily lose electron to form cation.
	terms involved in ionic bonding.	879	(d)
869	(a)		Ionic compounds having lattice energy higher
007	$BF_{a}(sn^{2}) NO_{a}(sn^{2}) NH_{a}(sn^{3})$ and $H_{a}O(sn^{3})$		than hydration energy are insoluble in water.
070	(c)	880	(a)
070	(C)		Removal of electron is easier in f -block elements
	sp ^o hybridisation letranedron	\sim	due to more shielding
	molecule	001	aue to more smelang.
	dsp^2 hybridisation Square planar	881	
	molecule		Metals and non-metals combine to complete their
	<i>sp</i> ³ <i>d</i> hybridisation Trigonal		octet. Since, non-metals have lack of electrons, in
	bipyramidal molecule		order to complete their octet, they gain electrons,
	sp^3d^2 or d^2sp^3 Octahedron		consequently, the size of non-metal atom will
	molecule		increase.
	hybridisation		Metal + Non – metal \rightarrow Electrovalent bond
871	(h)		(Na ⁺) (Cl) NaCl
0/1		882	
		001	These are characteristics of hydration
	H-Ö-Ş-Ö-H	002	(c)
		005	(c) Malagular an ion having a sum ains d als strong and
	Total number of uncharged electrons $-4 \times 4 - 16$		Molecules or ion naving no unpaired electrons are
072	$\frac{1}{1000} = \frac{1}{1000} + \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} + \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} + \frac{1}{1000} = 1$		diamagnetic, e. g.,
0/2			$\operatorname{Li}_2 = 6e^- = \sigma 1s^2$, $_{\sigma}^* 1s^2$, $\sigma 2s^2$
	Ionisation energy order is $B < C < 0 < N$.	884	(a)
873	(d)		Given electronic configuration of anion X is
\mathbf{c}	Given,		$\sigma 1s^2$, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\pi 2p_x^2$
5	observed dipole moment = 1.03 D		$=\pi 2p_{y}^{2},\sigma 2p_{z}^{2},*_{\pi}^{*}2p_{x}^{1}$
	Bond length of HCl molecule, $d = 1.275$ Å		\therefore Total number of electrons of anion $X = 15$
	$= 1.275 \times 10^{-8} \text{ cm}$		Hence the prior Vis N^-
	Charge of electron. $e^- = 4.8 \times 10^{-10}$ esu	005	(a)
	Percentage ionic character -2	002	
	Theoretical value of dipole moment $- a \times d$		Small cation causes more polarization in anion.
	Theoretical value of upple moment = $e \times a$		Also larger anions are easily polarized by a cation.
	$= 4.8 \times 10^{-10} \times 1.2/5 \times$		More is polarization of anion, more is covalent
	10 ⁻⁸ esu.cm		character.
	$= 6.12 \times 10^{-18}$ esu.cm		

886 (c) $(d)0_2 = 8 + 8 = 16 =$ $\sigma 1s^2$, $\sigma 1s^2$, $\sigma 2s^2$, $\sigma 2s^2$, $\sigma 2p_z^2$, $(\pi 2p_z^2 =$ Hydrogen bonding is responsible for their solubility. $\pi 2p_{y}^{2}$, $({}_{\pi}^{*}2p_{x}^{1} = {}_{\pi}^{*}2p_{y}^{1})$ 887 (a) $: 0_2$ molecule has unpaired electrons. Ne has van der Waals radius larger than covalent \therefore 0₂ molecule is paramagnetic. radius of fluorine. 901 (c) 888 (c) C_2 , N_2 and F_2 has no unpaired electron in their As the number of unpaired electrons (lone pair of molecular orbital configuration. electrons) increases, bond angle decreases. Thus, 902 **(d)** the decreasing order of bond angle is IP of inert gases is maximum. $NO_{2}^{+} > NO_{2} > NO_{2}^{-}$ Species : 903 (d) **Bond angle**: 180° 135° 115° Cu loses two electron to form Cu²⁺ 889 (a) 905 (a) Dipole moment of $CH_4 = 0$. $0^+_2 (15 e^-)$ 890 (b) $= KK^{*} (\sigma 2s)^{2} ({}^{*}_{\sigma} 2s)^{2} (\sigma 2p_{x})^{2}, (\pi 2p_{y})^{2}$ Each has 22 electrons. $= (\pi 2p_z)^2 ({}^*_{\pi} 2p_y)^1 = ({}^*_{\pi} 2p_z)^0$ 891 (d) Hence, bond order $=\frac{1}{2}(10-5)=2.5$ CS₂ is linear having zero dipole moment. 892 (a) $N_{2}^{+} (13 e^{-}) = KK^{*} (\sigma 2s)^{2} (\frac{*}{\sigma} 2s)^{2} (\pi 2p_{v})^{2}$ Atomic radius decreases along the period, $= (\pi 2 p_z)^2, (\sigma 2 p_x)^1$ increases down the group. Hence, Bond order $=\frac{1}{2}(9-4) = 2.5$ 894 (b) In NH₃, the N atom contains a one lone pair of 906 (b) electrons and three bond pairs in its valence shell. In XeF⁺₅, Xe atom has only seven electrons , *i.e.*, So, it shows sp^3 hybridisation. Due to presence of $5s^2$ $5p^5$. Here two 5p electrons are promoted to one lone pair of electron, its shape deviates from 5*d*-sublevel. Then 5*s*, three 5*p* and two 5*d* orbitals tetrahedral because lone pair shows more hybridize to give six sp^3d^2 hybrid orbitals in an repulsion than bond pairs. octahedral geometry. Out of these five orbitals are As singly occupied which form sigma bonds with five lp - lp > lp - bp > bp - bpF atoms. The sixth hybrid orbital is occupied by a So, its shape is pyramidal and angle 107°. lone pair in trans position giving a square 895 (d) pyramid structure. The K_{sp} value of CuS is less than ZnS and thus, ZnS |907 (d) HOMO, means highest occupied molecular orbital is more soluble. Also sodium salts are highly and in CO (14 electron ion), σ bonding molecular soluble in water. orbital in HOMO 896 (c) $CO = \sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \pi 2 p_{r}^{2}$ Both carbon atoms have 2σ -and 2π -bonds. $= \pi 2 p_{\nu}^2, \sigma 2 p_z^2$ 897 (b) $1 \text{debye} = 10^{-18} \text{esu.}$ 909 (c) 898 (c) Sulphur is sp^2 hybridised in SO₂. Low ionisation energy indicates that electron can $S = 1s^2, 2s^22p^6, 3s^23p^43d^0$ be easily lost and cation formation is easier. S(in excited state) = 899 (b) The paramagnetic species has unpaired electron in it. (a) $H_2 = 1 + 1 = \sigma 1s^2$ sp^2 -hybridisation $(b)N_2 = 7 + 7 = 14 =$ Due to sp^2 -hybridisation and presence of one lone $\sigma 1s^2$, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\pi 2p_x^2 = \pi 2p_y^2$, $\sigma 2p_z^2$ pair of electrons SO₂ has angular geometry. (c)CO = 6 + 8 = 14 = $\sigma 1s^2$, $\sigma^2 1s^2$, $\sigma 2s^2$, $\sigma^2 2s^2$, $\pi 2p_x^2 = \pi 2p_y^2$, $\sigma 2p_z^2$

Among N_2O, CO_2 and CO, all have sphybridisation.

910 (c)

Coordinate bonding involves sharing of an electron pair provided by a donor to acceptor atom.

911 (a)

In the structure of P_4O_{10} , each phosphorus atom is covalently linked with three oxygen atoms and each oxygen atom is bonded to two phosphorus atoms. Each phosphorus atom is also linked with an additional oxygen atom with the help of a coordinate linkage by lone pair of electron present on P atom.

919 (b)

A symmetrical molecule have zero dipole moment. The dipole moment of BF3 molecule is zero due to its symmetrical (triangular planar) structure.

The three fluoride atoms lie at the corners of an equilateral triangle with boron at the centre. Thus, the vectorial addition of the dipole moments of the three bonds gives a net sum of zero.

920 (c)

Bond order \propto Stability

Hence, for a stable molecule the value of bond order must be positive. When bond order is zero the molecule will not exist.

921 (b)

Follow Fajans' rule.

- 922 (b)
 - It is a fact.
- 923 (a)

In PCl_3 and $POCl_3$, P atom is sp^3 -hybridized.

924 (c)

Square planar geometry has dsp^2 -hybridisation.

925 (c)

Both BrO_3^- and XeO_3 have sp^3 -hybridisation and one lone pair of electron.

926 (a)

HF and CH₃OH shows intermolecular hydrogen bonding.

927 (d)

During hydration of ions in aqueous solution, there exists an attractive force between ions and water molecules, which are polar in nature and acts as dipole. So, hydrogen of ions in aqueous solution is an example ion-dipole interaction.

According to Fajan's rule, largest cation and smallest ions form ionic bond

929 (d)

Phosphorus atom is sp^3 hybridised in P_4 usually. Therefore, *p*-character 75%

930 (c)

Na⁺ is cation; Cl^{-} , PO_4^{3-} are anion.

931 (c)

Ionisation energy decreases down the group.

932 (d)

The characteristics to be observed during removal of II electron.

$$\begin{aligned} 1.(N_2 \to (\sigma 1s)^2 \ (_{\sigma}^* 1s)^2 \ (\sigma 2s)^2 (_{\sigma}^* 2s)^2 \\ (\sigma 2p_z)^2 \ (\pi 2p_x)^2 (\pi 2p_y)^2 \\ N_2^+ \to (\sigma 1s)^2 \ (_{\sigma}^* 1s)^2 \ (\sigma 2s)^2 (_{\sigma}^* 2s)^2 \\ (\sigma 2p_z)^2 \ (\pi 2p_x)^2 (\pi 2p_y)^1 \\ 1.0_2 \to (\sigma 1s)^2 \ (_{\sigma}^* 1s)^2 \ (\sigma 2s)^2 (_{\sigma}^* 2s)^2 \ (\sigma 2p_z)^2 \\ (\sigma 2p_x)^2 (\sigma 2p_y)^2 \ (_{\pi}^* 2p_x)^1 \ (_{\pi}^* 2p_y)^1 \\ 0_2^+ \to (\sigma 1s)^2 \ (_{\sigma}^* 1s)^2 \ (\sigma 2s)^2 \ (_{\sigma}^* 2s)^2 \ (2p_z)^2 \\ (\pi 2p_x)^2 (\pi 2p_y)^2 \ (_{\pi}^* 2p_x)^1 \end{aligned}$$

Since ,
$$\pi 2p_x$$
 and $\pi 2p_y$ are nearly same in energy,

the electrons can be removed from $(\pi 2p_y \text{ or } \pi 2p_x)$

and $\binom{*}{\pi 2 p_{y}}$ or $\frac{*}{\pi 2 p_{y}}$) respectively.

- 934 **(b)**
- Both possess $1s^2$, $2s^22p^6$, $3s^23p^6$ configuration. 936 (d)

The resultant dipole in regular tetrahedron is zero.

937 (c)

Smaller the size of cation, more is ionic character, more is attraction among ions.

938 **(c)**

Given ionic charge = 4.8×10^{-10} e.s.u. and ionic distance = $1\text{\AA} = 10^{-8}$ cm. We know that dipole moment = Ionic charge × ionic distance

$$= (4.8 \times 10^{-18} \text{ e. s. u. per cm})$$

= 4.8 × 10⁻¹⁸ e. s. u. per cm
= 4.8 debye.

939 **(d)**

As the *s*-character increases in hybridised orbitals, its electronegativity increases.

$$\sum_{s-\text{character }50\%}^{sp} \sum_{sp^2}^{sp^2} \sum_{sp^3}^{sp^3}$$

940 (d)

 PCl_3 and $AsCl_3$ have sp^3 hybridisation and PF_5 has sp^3d hybridisation. Hence, in group of PCl_3 , $AsCl_3$ and PF_5 all do not have sp^3d hybridisation.

942 (d)

Each has 18 electrons.

943 **(b)**

Alkali metals are always univalent.

944 **(c)**

XeF₄ has sp^3d^2 -hybridized Xe atom having two lone pair of electrons and thus, octahedral geometry changes to square planar due to lone pair effect.

945 (d)

 $PCl_5 = sp^3d$ (Trigonal pyramidal) $IF_7 = sp^3d^3$ (Pentagonal bipyramidal) $H_3O^+ = sp^3$ (Pyramidal) $ClO_2 = sp^2$ (Angular) bond length are shorter than single bond due to resonance. $NH_4^+ = sp^3$ (Tetrahedral)

946 **(d)**

B in BF₃ has sp^2 -hybridization.

947 **(c)**

In metallic bonds, the valence shell electrons are delocalised and shared between many atoms. These delocalised electrons allow the metal atoms to slide past one another without being subjected strong repulsive forces. The malleability and ductility of metals is due to this sliding capacity of the delocalised electrons.

9

CH₃ - CH₂ - NH₂

$$sp^{3}$$
 sp^{3}
CH₃ - CH = CH₂
 sp^{3} sp^{2} sp^{2}
 0
 $||$
CH₃ - C - NH₂
 sp^{3} sp^{3}
CH₃ - CH₂ - C \equiv N
 sp^{3} sp^{2} sp
949 (a)
A reason for given fact.

950 (c)

Benzene nitrile contains 13σ and 5π bonds. 951 (d)

During melting of SiO_2 , the gient network structure held by covalent bonds breaks to give

individual molecules of SiO2. In contrast, during
boiling of H2O only change of state occurs from
liquid to gaseous; during melting of KCN,
electrostatic attraction between K⁺ and CN⁻ ions
is overcome; during boiling of CF_4 , van der Waals'962
Br(c)
Potforces of attraction breaks963(c)

952 **(b)**

Ethyl alcohol $\rm C_2H_5OH$ is soluble in water due to H-bonding.

953 **(b)**

Only *p*-orbitals give rise to σ -bond (head on overlapping) and π -bond (lateral overlapping).

954 **(b)**

 $\rm HCl$ and $\rm AlCl_3$ are covalent but give ions in solution.

955 **(b)**

As a result of more overlapping. Note that π bonds are formed after σ -has already formed.

956 **(b)**

(a) $NH_3 + H^+ \rightarrow NH_4^+$ (3bp + 1lp) $(4bp \Rightarrow sp^3 hybridisation)$ 967 (d) \Rightarrow sp³ hybridisation) (b) $BF_3 + F^- \rightarrow BF_4^ (3bp + sp^2$ hybridisation) $(4bp \Rightarrow sp^3 \text{ hybridisation})$ (c) $H_2O + H^+ \rightarrow H_3O^+$ (3bp + 1h)(2bp + 2lp) \Rightarrow sp³ hybridisation) \Rightarrow sp³ hybridisation) (d) $CH \equiv CH + 2H_2 \rightarrow CH_3 - CH_3$ 968 (c) sp^3 sp^3 sp sp Hence, reaction given in option (b) involves the change of hybridisation from sp^2 to sp^3 . 957 (c) Lattice energy of BaSO₄ is appreciable high and predominates over hydration energy. 970 (d) 958 (a) Xe in XeOF₄ has sp^3d^2 -hybridization having one 971 (c) Ione pair on Xe atom. 960 (c) Due to back bonding in BF₃. 961 (c) 972 (b) $N \equiv C - C - C \equiv N$ $C_2(CN)_4$ is $N \equiv C - C - C \equiv N$ molecules. B.E. of F₂, Cl₂, Br₂, I₂ are 37, 58, 46 and C = C is sp^3 -hybridization and $C \equiv N$ is sp- 36 kcal mol^{-1} respectively.

962 (c) Electron affinity order for halogens is Cl > F >Br > I.Potash alum is a double salt. Potash alum, K_2SO_4 . $Al_x(SO_4)_3$. $24H_2O$ (given) Ions Al SO₄ Valency +3Therefore, $Al_3(SO_4)_3$ is compound of Al^3 SO_4^{2-} . On comparing, *x*=2 Hence, formula of potash alum is $= K_2 SO_4 . Al_2 (SO_4)_3 . 24H_2 O_4$ 964 (d) For KO_2, O_2^- has unpaired electron so, it is paramagnetic. $0_2^-(17)$ $\sigma 1s^2, \, {}^*_{\sigma} 1s^2, \sigma 2s^2, \, {}^*_{\sigma} 2s^2, \sigma 2p_x^2, (\sigma 2p_y^2 = \sigma 2p_z^2),$ ${}^*_{\pi}2p_{\nu}^2 = {}^*_{\pi}2p_z^1$ 965 (c) HCl exists as $H^{\delta+}$ — $Cl^{\delta-}$ due to difference in electronegativity of H and Cl. 966 (b) Outer shell electrons are referred as valence electrons. Bond order \propto stability Species Bond order 0_{2}^{+} 2.5 0_{2} 2.0 0^{-}_{2} 1.5 Hence, the order of stability is $0_2^+ > 0_2 > 0_2^-$ Diamond is hard, graphite is soft. 969 (a) IF₅ is square pyramid (sp^3d^2 -hybridisation in I); PCl_5 is trigonal bipyramid (sp^3d -hybridisation in P). Characteristics of bond order concept. M. θ . configuration of O₂ is $\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p^2, \pi 2p_x^2, \pi 2p_y^2, \pi^* 2p_x^1, \pi$ Bond energy of Cl_2 is highest among all halogen

hybridized.

974 (a) I Bond length $\propto \frac{1}{Bond order}$ Н Н Number of σ bonds in 1-butene are 11. $N0^{-} = 16e^{-}$ 977 (b) $= \sigma 1 s^2, \, {}^*_{\sigma} 1 s^2, \, \sigma 2 s^2, \, {}^*_{\sigma} 2 s^2, \, \sigma 2 p_x^2, \pi 2 p_y^2$ NO_3^- has sp^2 -hybridization and possesses $=\pi 2p_z^2$, $\pi^2 2p_y^1 = \pi^2 2p_z^1$ coplanar or equilateral triangular geometry. $BO = \frac{N_{b-}N_a}{2}$ 978 **(b)** $=\frac{10-6}{2}=2$ CCl₄ involves two non-metals C and Cl and thus, bonding is covalent. CaH₂ is an ionic compound as Similarly BO of NO⁺ will be calculated as it involves alkaline earth metal. $N0^{+} = 14e^{-}$ 979 (c) $BO = \frac{10-4}{2} = 3$ CaO is basic oxide. $CN^{-} = 14e^{-}, BO = 3$ $CN^+ = 13e^-, BO = \frac{9-4}{2} = 2.5$ Bond order is least for NO^- . So, its bond length is highest. 975 **(c)** $CsBr_3 \rightarrow Cs^+ + Br_3^-$ 976 (c) Η ННН H - C = C - C - H311 EVE SMARTA